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Preface

The aim of this book is to introduce the reader to this fascinating topic of
squares, which, to quote Olga Taussky [T1], “has one of the longest history
and begins with Pythagoras’ theorem and the Pythagorian triangles”. Our
text, in particular, includes the most elegant and astonishing recent results
of Albrecht Pfister about the 2™ identities, the Stufe of fields (the Stufe
s(K) of a field K is the least positive integer s for which the equation
—1=a?+...+a? (aj € k) is solvable. In case of non-solvability, we put
8(K) = o00) and the sums of squares in function fields over the real numbers
(or real closed fields).

Sums of squares can be regarded as a special case of the diagonal
{quadratic) forms (in particular of the beautiful Pfister forms) which are
themselves a special case of general quadratic forms. Some results, which
look beautiful when viewed from the point of view of squares, appear quite
artificial as results on quadratic forms; e.g. to say that in a certain field K,

—1 can be written as a sum of two squares (1)
is the same thing as saying that for given a, b, ¢, d € K, with ad — bc # 0,
—1 can be written as
-1 =(a® +cHz? + (b + d*)y? + 2(ab + cd)zy. (2)
Whereas (2) is artificial, (1) is a striking result.

In the present exposition, we have made it a point to stick to squares
as far as possible and to appeal to the theory of general quadratic forms
only when necessary. And indeed it is impossible totally to dispense with
the general theory; the use of its basic ideas, at least in parts, becomes
absolutely essential.



viii Preface

Historically quadratic forms were regarded as a topic in number theory.
However, E.Witt in his classical paper “Theorie der quadratischen Formen
in beliebigen Kérpern”, which appeared in Crelle’s Journal in 1937 [W2],
opened up a new chapter in the theory of quadratic forms: that of combining
the number theoretic aspect with the algebraic development, by the creation
of the famous Witt ring.

Then, triggered off by Cassels’ paper “On the representation of rational
functions as sums of squares” which appeared in Acta Arithmetica in 1964
[C2], A.Pfister, about 1966, suddenly came up with his celebrated struc-
ture theorems, giving birth to a purely algebraic theory of quadratic forms.
Special cases of the arithmetical aspect of Pfister’s theory are his beautiful
results about sums of squares and Pfister forms.

After Cassels’ and Pfister’s discoveries the subject picked up fast and
excellent books and survey articles have been written on the subject by
many great authors like T.Y.Lam [L2], W.Scharlau [S1], Olga Taussky [T1],
Daniel Shapiro [S6], Emil Grosswald [G3] to name a few.

So, what exactly is new in the present treatment? Simply that most
of the exposition is extremely elementary, only requiring familiarity with,
fields, polynomials and matrices. What we find most surprising is that such
outstanding questions as

(I)  What numbers can (and do) occur as Stufe of fields?
(I1) For what values of n can there be identities like
(224 ..+ 4.+ =2 4.+ 22
with z; € K(z1,...,Zn,¥1,.--,Yn)?
require practically no further prerequisites than those mentioned above and
yet all these years these simple elegant results, had eluded great mathemti-
cians.

Chapters 1 through 16 and the appendices bear out the above remarks;
they are all very elementary and include much of the arithmetical aspects
of Pfister’s work and yet can be easily understood by undergraduate level
students. Chapters 17 and 18 make essential use of the Hasse-Minkowski
theorem, but otherwise keep to the spirit of the rest of the book.

Most of the treatment is for fields, except for Chapters 6, 7, 8 and 9
which look at positive semi-definite forms and sums of squares in the ring
R[X;, Xa,...,X,]). This topic is of great historical importance as Hilbert’s
pioneering work began with it and already in 1888, he proved [H3] that the
set Ppn,m of all positive semi-definite forms of degree m (m even necessarily)
in R[X1,..., Xy,] is the same as the set £, ,, of all sums of squares of forms
of degree m/2 in R[X,,...,X,] if and only if n = 2, for all (even) m > 2;
foralln>2, m=2and n=3, m=4.



Preface ix

Another reason for including this topic here is that it fits admirably into
the spirit of the book and it is of current research interest, a large number
of comparitively easy results being still to be discovered and some strikingly
beautiful theorems have been proved by Choi, Lam, Reznick and Robinson,
to name a few. We therefore give a large number of references concerned
with this topic to bring the reader up to date with it.

A survey of elementary ideas about quadratic forms is almost indispensi-
ble in any work on squares and we have added one chapter (Chapter 11) to
cover this. Before Chapter 11, we hardly use this theory.

The only place where squares feature systematically is the Artin-Schreier
theory of formally real fields, which, in a way is a very helpful background
to the subject matter of squares, and so to that of this book. So although it
is not needed directly for the understanding of the rest of the book, except
perhaps Chapter 16, we thought we really ought to include it in a treatment
on squares. This is done in Chapter 15, also treated in an elementary way.

My sincere and grateful thanks are due to Professor J.W.S. Cassels for
suggestions which have gone a long way in improving the text. I thank him
especially for many of the proofs too, for example Hilbert’s proof (1888) of
Theorem 6.1, which I would never have been able to sort out on my own.

My grateful thanks are also due to Professor A.Pfister and Professor
D.B.Shapiro for giving many helpful suggestions and proofs of, for example,
Theorems 13.6 and 3.5, and to Professor T.Y.Lam and Professor K.Y.Lam,
for sending me some reprints and other useful material.

Finally I thank my colleague Dr. J.C. Parnami who helped me extensively
with the manuscript.

I wish you all a happy reading on squares, but I warn you: don’t become
one yourself.

A R.Rajwade






Notation

1. The set of all

(i) natural numbers is N,
(i1) integersis Z,

(iii) rational numbers is Q,
(iv) real numbers is R,

(v) complex numbers is C,
(vi) quaternions is H,

(vil) octonions is €.

2. F4 is the finite field of ¢ = p* elements.

3. For a field K denote by

(1)  s(K), the Stufe of K (see Definition 2.1},

(11) P(K) the pythagoras number of K,

(1i1) K((t)) the field of formal power series in ¢ over K

= {ant" + a1tV '+ ... |N€Z,q; € K}

4. For a quadratic form f defined over a field K, denote by
(i) My(K) the set of all similarity factors of f over K

—{c€ K* | cf ~ f)
(if) Vy(K) the set of all non-zero values taken by f over K
Vi(K)y={c€e K*|c= f(v),v € K"}.
In the special case when f = X? +... + X2, we write V§(K) as Gn(K).



xii Indez of notation

(i) K[Xy,...,Xx] is the ring of polynomials in Xi,...,X, with coeffi-
cients in K.

(i) K(Xi,...,Xn) is the field of rational functions in X,,..., X, with
coefficients in K.

6. SOS stands for sum of squares. PSD stands for positive semi-definite.

7.

(i) Za,m = set of all forms of degree m in n variables which are SOS in
R(X1,...,Xa].

(i1) Pn,m = set of all PSD forms in R[X}, ..., X,] of degree m.

(ii1) £&(S) = set of all extremal forms of any convex set S.

8. ®m(Xi1,...,X2m) = m-fold Pfister form. The 2-fold Pfister form &, =
X? 4+ aY? +b2% + abW? is denoted by [a, b).

9. For n € N, if n = 2™y (u odd), the Radon function p(n) is defined by

2m+1 0
) 2m . _J1

p(n) = 2m according as m = 0 (mod 4).
2m 42 3

Equivalently if m = 4a + b (0 < b < 3), then p(n) = 8a + 2°.

10. For a form f, we denote by &(f) the zero set of f in the relevant
projective space.
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The theorem of Hurwitz (1898) on the
2,4,8-identities

The curious identity

(X7 + XY +YF) = (1Y - oY) + (XY + XoV1)? (LD)
tells us that a product of two sums of two squares is itself a sum of two
squares. Known to the Greeks, (1.1) appears at high school level as one

learns about complex numbers and their norms and proves that the norm
of the product of two complex numbers Z,, Z, is the product of their norms:

12,2, 1* = |2, *|2,f? 1.1y
Now writing Z; = X +:X,,Z, =Y + Y5, so that we have
2,2, = (X1Yh - XoY,) +4( X, Y2 + Xo1))
one sees that (1.1) and (1.1)’ are the same.

This identity enables one to prove the following curious result: Let K be
a field and let

Gy(K) ={a€ K*|a =z +y?%,2,y € K}.
Then G,(K) is a group under multiplication. Indeed, the closure property
is the identity (1.1) while if a = 22 + y? € G,(K), then
1/a = afa® = (2* +y*)/a® = (z/a)’ + (y/a)* € Go(K)
as required.
The following striking identity was already known to Euler in 1770 [E2]

and he used it to prove Lagrange’s theorem that every positive integer is a
sum of four squares:

X+ X3+ X3+ XD+ + Y7 +Y)) =20+ 22+ 23 + 2] (1.2)
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where

Zy = Xih - XpY, - X3Ys - X4Y,

Zy = X1 Y2 + XoYh + XY, — X4Ys

Z3 = X1Y3 + X3Y, — XoYy + XuYs

Zy = X1 Yy + XyYh + XV — XY,
The discovery of quaternions by William Hamilton in 1843 [H2] brought out
the real significance of the identity (1.2) in as much as (1.2) is simply the
fact that the norm of a product of two quaternions is equal to the product
of their norms.

Almost immediately after Hamilton’s discovery of the quaternions, Arthur

Cayley [C4] in 1845, discovered the octonions (the Cayley numbers) which
give rise to the incredible looking identity

(X4 XDV +.. . +YH) =22 +...+ 22 (1.3)
where

Z, = X" — XoYo — XaYs — XY — X5V — XeYs — X7Y7r — XgYs,

Zy = X1Y2 + X0V + X3Y, — Xy Y5 4+ X5Ye — XeYs — X7V + X3Yo,

Zy = X1Y3 + X3Y] — Xo¥y + X, Yo + Xs Y7 — XoVs + XeYs — XY,

Zy = X1 Y+ XaYqh + X2Ys — X5Yo + XY — Xg¥s — XY + X275,

Zy = X1 Y5 + X5V — XY + X6Yo — XaY7 4+ X7V — X, Vs + XYy,

Zg = X1Ys + Xe¥1 + XoYs — XsY2 — X3Ys + XV + XuY7 — X7V,

Z7 = X1Y7 + X7Y) + XoYs — XY + X3Ys — X5Vs — XY + X6V,

Zy = X1 Ys + XY — XoY7 + XoYo + XsYs — XeYs + XuYs — X5Ya.
Although the identity emerges most naturally from Cayley numbers, it was
discovered nearly a quarter of a century earlier by C.F. Degan (1822) with
minor sign differences (see [D2] p.164).

Degan stated (erroneously of course) that there is a like formula for 2"
squares. For the case of 16 squares, he gave the literal parts of the 16
bilinear functions Z,,Z,,...Z;¢ but left most of the signs undetermined,
saying that the only difficulty is the prolixity of the ambiguities of signs.

Degan was also aware of the 2— and 4— variable Pfister forms whose
detailed study we shall take up in Chapter 12.

As before, if we define

Gi={a€K'la=z2+... +11,z; € K}
and Gg similarly, then it follows from (1.2) and (1.3) respectively that G4
and Gj are groups under multiplication, so that we have the chain of inclu-
sions

K* CG,C Gy CGs C K™
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A great many unsuccessful attempts followed Degan’s discovery of (1.3),
to extend formulae (1.1),(1.2) and (1.3) to a similar 16 term identity, and
many workers, realizing the impossibility of such an extension, tried giving
convincing arguments to prove the impossibility. Hamilton’s and Cayley’s
discoveries had reduced the problem to the determination of the so-called
normed algebras over the real numbers R; the four known ones being R (of
dimension 1), the complex numbers C (of dimension 2), the quaternions H
(of dimension 4) and the octonions O (of dimension 8). It is an astonishing
observation how the axioms of the ordered field R gradually drop off as we
move up these higher dimensional hypercomplex systems: C is, no doubt
a field, commutative and associative (under multiplication) and a division
ring, but the order property is lost. H is only an associative division ring;
thus commutativity, and order are both lost. Finally O is not even asso-
ciative - it is merely a division ring; thus commutativity, associativity and
order are all lost.

The half century following the discovery of these quaternions and octo-
nions saw many attempts to find a 16-dimensional hypercomplex system
over the reals and several erroneous affirmations were given. Finally in
1898, Hurwitz [H7] gave a decisive solution to the problem about the di-
mensionality of all possible normed algebras over R and so also about the
possible values of n for which there is an identity of the type (1.3) with n
terms. More precisely we have the following.

Theorem 1.1 (Hurwitz-1898). Let K be a field with charK # 2. The
only values of n for which there i3 an identity of the type

(Xi+.  + XY+ .+ YD) =2 +... + 22 (1.4)

where the Zy are bilinear functions of the X; and the Y;, coefficients in K
aren=1,24,8.

Actually Hurwitz proved this only over C, but his proof generalizes to
any field K with charK # 2. We give here a proof given by Dickson in his
beautiful expository paper [D2] of 1919. A proof using normed algebras can
be found in A.A. Albert’s Studies in Modern Algebra [A5].

The idea is to convert (1.4) into a system of matrix equations. The
bilinearity condition on the Z; can be written as

Z a a2 ... Qip £
Y,

Z" Qnl Qn2 ... Guq Yn
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where the a;; are linear functions of X, Xs,...,X». Then (1.4) becomes

Y. Z
2
(X12++X121)(Y1,,Yn) . In=(Z1,...,Zn)( )
Y, Zn
=Y'A'AY,
ie.
n
2 2 : Y
()fl,na""yﬂ)[(Xl +X22++Xn)IH_AA] : =0,
Y.
and since this is true for all Y7, Y3,...,Y,, it follows that
"A=(X?+...+ XD, (1.5)
Now
a1 ajg ...
A= azy a2 e
BV X, + 58P, + . 050 X + 6P, 4
VX, + bg;2>X2 +... b(“)Xl + b(”)X2 +...

=A1 X1+ A X +...+A X, say
By (1.5), (A1 X1 + A1 X + ... + AL XA X + A X + ...+ ARXG)
=(X?+X2 4. . +XDI,.
Since this is true for all X;, we have

(1) AjA; =I.(j =1,2....,n), hence also A;A} = I,..
(2) AlAL+ALA; =0,1<j,k<n,j#k.

Conversely, the existence of such a system implies that (1.4) holds with Zx
bilinear in the X; and the Y;. Note also that if n = 1, (2) is vacuous, and
(1) can be trivially satisfied so we may suppose n > 1.

Now let B; = AL Ai(1 = 1,2,...,n—1). The B’s are easily seen to satisfy

(1) B!B;=1,
(2) Bi+B:i=0 (z,]=1,2,...,n—1)
(3) BiB;+BiB=0 (i #))
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Hence we have

(i) Bi=-B; (i=1,2,...,n—1)ie. the B;
are skew-symmetric matrices
(ii) B?=—-1 (i=12,...,n—-1)
(i) BiB;=-B;B; i,j=1,2,....n—1 i#j.
It follows that |B;| = |Bi| = | — B;| = (—1)"|B;], and since |B;| # 0 we

must have n even. Hence

(1.6)

Proposition 1. There is no identity of the type (1.4) if n(> 1) is odd.
In future, therefore, we suppose n to be even. Now consider the following
set G of n X n matrices:
{1,B;,,B;B;,, B; B;,B .,ByB;,...B
and B1Bs...Bn_ (‘il <n,i <ty <m,.. )}

Here B;, takes n — 1 values viz. By, B; ... Bn_;, while B; B;, takes (";l)
values viz. BB, B1Bj,... etc. So altogether there are 1 + ("1_1) +...4+
(Z:i) = 2"~ ! elements in the set G. Let G = By, B;,...B;. € G. Then we
have

ias i3y - in—2

Lemma 1. G is symmetric if r = 0 or 3 modulo 4, and skew-symmetric
ifr =1 or 2 modulo 4.

Proof.
G'=B; ...B; =(-1)'B;,...B;,
= (-1)"(-1)""'B;,(Bi, ... Bi,)
by (iii) of (1.6) to commute B;, successively with B;,,...,B; |
=(-1)"(-1)""Y(-1)""%B;,Bi,(B;, ... Bi,)
and so on
=(-1)"(-1)"...(~1)*-1)B;,B;, ... B;
= (=1)IH2Htrg
= (—1)2g

[ Gifr=0,3,(4)
“1-Gifr=1,2,(4)

r

O

Lemma 2. Let M € G. Then the set MG = {MG|G € G} is simply a
permutation of G with each term prefized with either +1 or —1.
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Proof. The result is clear if the multiplier M is By, since then the product
will contain or lack B) according as the multiplicand of G lacks or contains
B, (use again (1.6)).

If the multiplier is B,, we first replace B; B, ..., wherever it appears, by
B, B, ... and see that the former argument applies.

After thus proving our statement when the multiplier is any B;, we see
that it holds when the multiplier is any product of the B’s. O

An Example: n =4.
G ={I,B, B;,B;,B,By, B, B3, B\ B3, B, B, B; }.
Then
B,G = {B3,B;;BI,B3BQ,B§,B3BI B,,B3B,B;,B3B,B,,B; B, B, B, }
= {B3,—B1B3,—B,B3,~1,B,B; B3, By, B,,—B1 B, }
={-1,B,, B,,Bs,—B,B;,— By B3, ~ B\ B3, B, B, B3 }.

Our aim is now the following.

Proposition 2. At least half of the elements of G are linearly independent.
With this in view, we look for any linear relations that can exist amongst
the elements of G.

Definition. A relation \jG) + A,G2 +...+A,G, =0, G; € G, A; €R,
or R = 0 for short, is called irreducible if it is not possible to express R as
R, + R,, where Ry = 0, R; = 0 represent two linear relations that hold
between the subsets R; and Ry of R with By N R; = @, i.e. there are no
matrices common to R; and R,.

We have the following,.

Lemma 3. An irreducible relation R = 0 cannot involve both symmetric
and skew-symmetric matrices.

Proof. Let M, be the subset of all symmetric matrices in R and M, the set
of all skew-symmetric matrices in R. Then M; + M, =0, i.e. M) = —M,.
Hence M), = M{ = —M} = M,, i.e. My = M,. It follows that M; = 0,
M, = 0 which contradicts the irreducibility of R = 0. O

Now let R = 0 be any irreducible relation between the matrices of G. By
multiplying R by a suitable A\G (A € R, G € G) we get a new relation 7" = 0,
one term of which is I and all the remaining terms are products of matrices
of G by real constants. For suppose uG (1 € R, G € G) is a term in R which
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we wish should become I in the relation 7' = 0. One just multiplies R =0
by £~ 'G~! and notes that one of G~ € G.

For example if 4B, B3 is one term of R, then on multiplying R = 0 by

1 - 1 o 1
—3(B2B.) = 2By By = —2(=By)(=By)

1 1
= —ZBsBz = ZBzBs,

we get what is required.

This new relation T = 0 is also irreducible, for if T' = 0 were to split as
T, =0, T = 0, then since T = A\GR we have A"!G"!T =Randso R=0
splits as A™1G™ T, = 0, \"1G T} = 0, which gives a contradiction.

Hence we may suppose that T' = 0 looks like

I=7"ciiziaBiy BiBig + ) diyigici, Biy Biy Biy, Biy + . .. (*)
where by Lemma 3, each of the matrices B;, B;, B;,, B;, Bi, B, B;,, etc. is
symmetric since ] is symmetric. That is why no singleton B; nor any of
the products B; B; of two B’s can be involved in () since B; and B;B; are
skew-symmetric by Lemma 1.

Now multiply (*) throughout on the right by B; to obtain an irreducible
relation which then involves only skew-symmetric matrices since one term
(on the left side) is the skew-symmetric matrix B;. But by Lemma 1,
B;, Bi, Bi,B;, is symmetric. So all the ¢; are 0 if only ¢ is distinct from
t1%2%3. Since ¢ may have any value < n — 1, we see that each ¢ is 0 unless
n — 1 = 3 for then i cannot be chosen different from 14,,1,,15.

Next we show that all the d’s are 0 too; for multiply (*) by B;, and it
becomes

B,’4 = Z d515253;4B;4 B.‘lB.'zB,'aB,'4 +....
But B,'4B,'lB,'zB,‘aB,‘4 = (—1)33,‘13,‘23;33'-24 = BilBizBia' So (*) becomes
B,'4 = ZdiliziahBilBl'zBia +....
Here B;, B;, B, is symmetric, while B;, is skew-symmetric (by Lemma 1).
It follows that all the d’s are 0 too.

The method used in proving ¢ = 0 applies when the number r of factors
in By, B;,...B;, is = 3(4) and r < n — 1. Similarly the method used in
proving d = 0 also applies when r = 0(4).

Hence if our relation exists, it has the form

I= ]CB]BQ s B"_l

the right hand term being the only survivor. Now [ is symmetric so
BB, ...B,_, is symmetric i.e. n —1 = 0 or 3(4), but n is even so
n—1=3(4)ie n=0(4).
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We have thus proved the following.

(1.7)

If an irreducible relation beiween the elements
of G does ezist, then n = 0(4). }
Now square this relation to get
I=k’B\B;...B,_1B\B;... B
=k*(-1)""%B,...B,1B;...B,_,
= k}(—1)¥n=Dnp,
Since n = 0(4), we see that k2 = li.e. k = +1. Hence we have the following.

Lemma 4. Ifn = 2(4) then the 2"~! matrices of G are linearly indepen-
dent, while for n = 0(4), they are either linearly independent or are con-
nected by the relations which arise from the relation I = +B\B, ... B,_,
through multiplication by the various elements of G, but are connected by no
further irreducible linear relations.

Example. Let n = 4. Then

g = {I) Bh B?7 B3) 31327 BZBS, BlBZ.’n BlB2B3}
and these eight matrices are either linearly independent or are connected
by the following four irreducible linear relations and no others:

I=+B,B,B;,B, = ¥B; B3, B, = +B,B3, By = ¥B,B;.
These express By By B3, Bo B3, By B;, By B; linearly in terms of I, By, Bs,
Bj;; so that these latter matrices are, in any case, linearly independent.

Now comnsider all the irreducible linear relations that exist between the
element of G. As we have seen, they are all of the type

G-1=%G-BB,... B,_1(G€G)

and no others. Now reduce the right side of this using (1.6). Then one of
G or the reduced right side obviously contains fewer than half of the B’s
while the other contains more than half of the B’s.

Thus these irreducible linear relations merely serve to express the prod-
ucts containing more than half of the B’s in terms of those with less than
half of the B’s.

So in every case (i.e. irrespective of whether n = 0 or 2 (mod 4)) the
2"~% matrices of G, which are products of less than 231 B’s, are linearly
independent. Hence for all values of n (necessarily even) if there is to be an
identity of the type (1.4), the 2"~2 matrices of § consisting of the product
of at most 252 B’s are linearly independent.

This completes the proof of Proposition 2. d
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We can now give a proof of our main result.
The elements of G are all n X n matrices and the maximum number of

linearly independent n X n matrices is n?

since they form, over the reals, a
vector space of dimension n?. Hence by the proposition we get
2"? < n?,
This is satisfied if n < 8 but fails if n = 10. Now if it fails for n = m, then
it fails for n = m + 1 for we have
2m+1=2 = 2.2™~2 5 2.m? (since the relation fails for m)
>(m+1)7?ifm >3
It follows that if an identity of the type (1.4) exists, then n < 8 (and n is
even). For n = 2, 4, 8 we already have the required type of identities. It
remains to dispose off the case n = 6.
Suppose an identity exists for n = 6. Then since 6 = 2(4), we see that

the 2° matrices of G are linearly independent. (1)
Of these 32 matrices, 16 are skew-symmetric by Lemma 1, viz. the ones
that are products of 1, 2 or 5 B’s. But

between any 16 skew-symmetric 6 X 6 matrices }

(i)

there exists a linear relation.

This is because the 15 matrices

0 1 0 0 01
-1 0 0 0 0 0
0 00 ...J°t-1 0 O >

with a 1 in the one place above the main diagonal, —1 in the corresponding
place below, and 0’s elsewhere, form a basis for the subspace of all 6 x6 skew-
symmetric matrices and so this subspace has dimension 15. This proves (ii).
(i) and (ii) above are contradictory. Hence no identity of type (1.4) can
exist for n = 6.
That at last completes the proof of Hurwitz’s theorem. d

Remark 1. The proof works for any field K of characteristic # 2.

Remark 2. There are three obvious ways of generalizing the identity (1.4);
they are

(a) Allow the Z; to be rational functions of the X; and the Yi: Z; €
K(X,,...,Xa,1,...,Y,), rather than be just bilinear functions and then
find the possibilities for n.
(b) Consider the (r, s, n)-identity

(X4 + XY+, +YH =22 +...+ 22, (1.8)



10 Squares

where the Z; are bilinear in the X; and the Y (or more generally rational
functions) and determine, for given r, s the least value of n for which (1.8)
holds; or alternatively determine the maximum value of r (given s and n)
for which (1.8) holds.
(c) Instead of a ‘product formula’ (1.4) for the form X2 +...+ X2, look for
such a formula for more general quadratic forms, i.e.

o X1, s Xa) ¢,y YY) =924, ..., 2,)
where Z; € K(X1,...,Xa,11,...,Ys).
Pfister solved (a) and (c) completely, whereas for the special case s = n, Hur-
witz and Radon solved (b). In the next chapter, we shall describe Pfister’s
solution of (a) and its singularly beautiful consequences. In later chapters,
(b) and (c) will also be covered. Actually little is known about (b) when r,
s, n are all different.

Exercises

1. Show from first principles that an identity of the type

(XP+ X3+ X+ Y +Y) =20 + 23 + Z3
where Z,, Z,, Z3 are bilinear functions of X, X3, X3, Y}, Y,, Y3, with coefhi-
cients in the field Q of rational numbers, cannot hold. [Hint: 3-5 = 15.]

2. Determine the most general bilinear functions Z,, Z2 in X1, X2, 11, Y2
for which (1.1) holds.

3. Show that for any field K with charK # 2, the existence of the more
general identity

(X2 + XY+, +YH =224+, . 4+ 22
where the Zj are bilinear functions of the X;’s and the Y;’s with coefficients
in K is equivalent to the existance of n X s matrices A,, A,, ... A, satisfying

AjAi=I1,(1<i<r)
AAj+ A =0(#5,1<46,j<r).

Definition. We then say that the triple (r, s, n) is admissible over K.

4. Show that (3,5,7) is admissible over any field K.
Hint:
(XT+ X7+ XH(P 4. + Y =
(X2+.. +X24+0)Y2+...+ YD+ (X + X2+ XYL

Now use (1.2) to write this as a sum of seven squares.
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5. Prove that if the triple (r,n,n) is admissible over K then so is (r +

1,2n,2n).

6. For the real number field R, show that in an identity of the form
(XF+- + XD+ + V) =2+ 4+ 27

with Z; € R(X,,...,X,,Y1,...,Y,), the Z; are necessarily bilinear in the

X'’s and the Y'’s.
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The 2N -identities and the Stufe of fields:
theorems of Pfister and Cassels

Although the impossibility of the identity (1.4) for n # 1, 2, 4, 8 has
been proved, it was under the stringent restriction that the Z; are bilinear
polynomials in the X; and the Y;. One could look into the possibility of the
existence of other values of n for which (1.4) holds, if we allow the Zx to be
more general polynomials in the X; and the Y;. However, in 1966, Frank
Adams [A1] showed that when n is not 1, 2, 4, 8, there are no identities
of the type (1.4) even if the Z; are allowed to be any bi-skew, continuous
functions of the X; and Y (see the Exercises in Chapter 13, Definition
(iv)p. 187). It was thus totally unexpected when in 1967, Albrecht Pfister
[P5] proved the following remarkable

Theorem 2.1. Let K be a field and let n = 2™ be a power of 2. Then
there are identities

(X4 + XY +...+YD) =2} +...+ 22 (2.1)

where the Zi are linear functions of the Y; with coefficients in
K(Xy,...,X.):

Zy = ZT"J'YJ' with Ti; € K(X4,-. HXa).
j=1
Conversely suppose n 13 not a power of 2. Then there is a field K such that
there is no identity (2.1) with the Zp € K(X,,..., X, Y1,...,Y,). Here
the Zx are not even demanded to be linear in the Y.
Intimately connected with this result is the notion of the Stufe s = s(K)
of a field K:
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Definition 2.1. The smallest positive integer s for which the equation
~l=dal+d}l+...+d? (a; € K)
is solvable is called* the Stufe s(K) of K. If the equation has no solution,

we put s = oo and call K formally real.
The following beautiful result is again due to Pfister [P1]

Theorem 2.2. For any field K, s(K'), if finite, is always a power of 2.
Conversely every power of 2 is the Stufe of some field K.

In this chapter, we shall give a proof of both these theorems. In the
process we shall get other results which are interesting in their own right.

The proof of the first part of Theorem 2.1 requires no elaborate algebraic
machinery and is indeed remarkably simple. We dispose of it first.

Proof of the first part of Theorem 2.1. We use induction on m. We know
that (2.1) holds for m = 1, 2, 3 (see (1.1), (1.2), (1.3) respectively). Suppose
that it holds for m. Write T = (T};) so that

Zy Y
Z Y;
S (2.2)
Z, Y,
Then (2.1) can be written as
e
2 2y/y72 2 2 2 Y
(Xi+. + XM+ +Y) =X+ + XN, YR) |
Y,
Z
n 2 22
=(Z7+...+ 20 = (21,20, Za) | .
Zy
h
Y2
= (Ylv' .. ,Yn)TIT .
Y,
by (2.2), i.e.
Y £
X2 +.. .+ XHN,.., YL | ¢ | -(%,....Y)T'T| : ) =0
Yn Yn

* Often referred to as the level
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or

1%
(Y,... . Y2 ) {(X?+...+ X, -T'T} ( : ) =0.
Y,
Since this is true for all ¥7,...,Y,,, we must have
TT =(X} +... + X2,
and so also T'T = (X? + ...+ X2)I, T being orthogonal.
We now prove (2.1) for 2™+! = 2n. Write
(X1, ., X20) = (XO, X))

where X = (X1,...,X,) and X® = (X,41,..., X2.). By the induction
hypothesis there exist two matrices 7!, T(®) say, corresponding to X(1),
X respectively such that

(X2 4 ...+ XD, =XOXO' [, = TOTQY = 7O 7O
and (2.3)
(X2 + .+ X2, = XOXO [, = TOTE = 7O T?)

and we wish to show that there exists a matrix T say, such that

TT=(X;{+.. . +XI+ X2, +...+ X7 ) zn. (2.4)
T 73 . : : :
Ty T = ( @ x )2 partitional matrix, where X will be determined

by (2.4). We have
™ T2 T  T(2)
- (5 ) (5 )
and using block multiplication of matrices this equals

TO'TO) L T@'TQ) TO'T@ L T@) X
T@' 7O 4 X'T(?) T TG L X'X

B AC.CETED. . ORS¢ 15 S|

- B c

say; we want to choose X so that A = B =0 and
C=(XI+. . . +X2+X2,+. ... +X2)..

To make A = 0 we have to have X = —T(2)’_l T T This automatically

makes B = 0 (just check). Now it seems too much to expect C to be what

we want. But we have

C = T®'T® L @ pp@y ™ ey pay p@
=X+ A XD (X2 o+ X2 TITO TOTO T
= (X2, 4. .+ X)L+
(X2 4.+ X2)TN(X2 4.+ XHTO'T®
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=(X2 4+ A X)L+ (XP 4.+ XD,
=(X?+.. +X24+XI, 4.+ X))
This completes the proof of the first part of Theorem 2.1.
We now come to a result of Cassels [C2], which, in a way, was the starting
point of this whole business and which is an indispensible tool in our further
developments.

Cassels’ Lemma (1964). Let f(X) € K(X) be a polynomial with coef-
ficients in K. If f(X) is a sum of n squares of elements of the field K(X),
then it is a sum of n squares of elements of the ring K[X].

Note: What is new in this enunciation is that the same number n of
squares suffice in K[X]; without this condition, the result had been proved
by Artin [A6).

Proof. 'There are three trivial cases of the lemma which we dispose of first.
(i) n = 1. Then f(X) = (p(X)/9(X))?, s0 ¢(X)Ip(X).
(i1) char K = 2. Then a? + % = (a + b)? and so if
FX) =rH(X)+... +7(X)
then combining two squares at a time into one, f(X) reduces to a single
square, i.e. we land up in case (1).
(iit) —1 is a sum of n — 1 squares of elements in K.
Say —1 =52+ ...+ b2_,. Then for any f(X), we have

0= (52) - (f;1>2‘
= (%)2 + (bl@y +ot (bn—l(f;1)>2

a sum of n squares of elements of K[X].
So now let us suppose none of these three cases holds and let

F(X) = (X)) @(X))* + ... + (Pa(X)/ga(X)).

Dropping the X from now on and clearing the denominators, this gives
fZP=YZ24+...+Y? ZV,....Y.€K[X),Z#0.
Thus the equation

fZR=Yr+.. . +...+Y2 (1)
has a solution (Z,Y;,...,Y;) with Z # 0 and we have to show that there
exists a solution of (1) with Z € K (Z # 0), i.e. with degree of Z (in X)
= 0. Now since (1) has a solution with Z # 0, so there is a solution, call it
(¢;m,--.0n), with ¢ # 0 for which deg ¢ is as small as possible:

fC=ni+.. (2)
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We shall show that this degree is 0 1.e. that ( € K, by showing that
if not, then there exists a solution, say (¢*,n7,...,n5) with (* # 0 and
deg (™ < deg(.

So suppose deg ( > 0. By the division algorithm in K[X], we can write,
foryj=1,2,...,n,

= A0+
where either v; = 0 or deg«y; < deg(. i.e.
ni/C =2 +7/C =X+ A, (3

say. Note that not all the v; can be zero, otherwise ¢ divides all the 5, so
that (2) becomes f = AZ + ... + A% - a contradiction, since the degree of {
was least possible.

Now let

¢ =C{Zkf—f} —2{§;A.-n.~—fc}

n; ="n; {Z/\? —f} —2); {Z/\-‘m —fC}~
Then visibly, all of ¢*,n*,...,n% € K[X]. We now claim

(a) that (¢*,n7,...,n}) is a solution of (1)
(b) ¢*#0and
(c) deg(* < deg(
This would then contradict the definition of { and so would prove the
lemma.

We prove (a) by brute force: we must show that ZJ- 1;;-2 - f(;*2 =0i.e.
that
2

Xj:[ﬂf{ZA?—f}2+4A?{ZAini—f<}
o {2 ]

Aelpr ] efgns]

“se{ot- s {3

Here the first terms from both sides cancel since Enf = f¢? and it
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remains to prove that

4{Xijxin; —fc} [(me.- —f) 3o (2')? —f) ;Am
- <ZA;n;—f<) F+(Xn-7) +f<} =0

Here the expression in square brackets just cancels out.
To prove (b) and (c) we substitute for A; from (3) in (*. Then

o[£ 0-22) ) (£ (2-4)nn)

i i

=(C(A?+...+A%) (using fC=n+...4+1%)
=C3 =1/t

Here not all the ~; are zero (as already noted) and so }_+? is non-zero since
otherwise by equating the coefficient of the highest power in X to 0, we find
that 0 is a sum of at most n squares of elements of K, which is the third
trivial case of the lemma. Thus ¢* # 0, which proves (b).

Finally ¢* = 1/¢ 3 ;47 giving ¢¢* = }_;7?. Equating degrees, we get
deg(+ deg(* = 2max; (degy;) < 2 deg( since degy; < deg( (for all 7).
Thus deg(* < deg(, which proves (c).

This completes the proof of Cassels’ lemma. d

Remark. The solution ((*,%7,...,n}) does not just come out of the blue.
It is the second point of intersection @ of the quadric (1) with the line joining
the points P = ({,m,...,ns) (on the quadric) and P' = (1,A4,...,A,) (in
space) in the n-dimensional projective space over the field K(X). The
simplest way to get this point @ is as follows: a general point of the line
PP is
(6’( + @, 0m + @Ay, ., 00, + 50/\71)

8/ being a parameter for various points, ¢ = 0 giving the point P. To get
@ we substitute this general point in the quadric (1):

F(67C + " +2600) = Y (6707 + @ A% + 2000m;))
j=1
ie. O2(C*f — Toni) +200(f¢ — ZAm;) +¢*(f — £ A}) = 0. But ¢*f =
2-n} so this becomes 20p(f¢ — 3" Ajn;) + @*(f — YA = 0 This
has a root ¢ = 0 as expected giving the point P. The other root is
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8/p = —(3°A2 = £)/2(3°Ajnj — Cf), and substituting this in the general
point and multiplying by a suitable factor (allowed in a projective space)
we get our point § as required.

We now deduce a few corollaries from this lemma.

Corollary 1. Let charK # 2 and let f(Xy,...,Xn)€ K(X1,...,Xm) be
a sum of n squares of elements of K(X1,...,Xm). Let a1,az2,...,am € K
be such that f(a1,...,am) is defined (i.e. the dominator is not 0). Then
Flar,...,am) 18 a sum of n squares in K.

Remark. The point is that although f(X;,...,X,,) is defined at
(@1...,am), it may well happen that the summands f}(X1,...,Xm) of the
right hand side of f(X1,...,Xm) = fZ 4+ ... + fZ may not be defined at
(a1,...,am), but still acccording to the corollary, f(ai,...,am) is a sum of
n squares in K.

Proof. We use induction on m. For m = 1, we have
f(X) = g(X)/MX) = (X)) +... + 73 (X).
Then gh = (11h)? + ...+ (yuh)?. Thus gh, which is in K[X], is a sum of
n squares in K(X) and so by Cassels’ lemma, it is a sum of n squares in
K[X]:
gh=fl+...+f2 (fj € KIX]).

Hence g(X)/h(X) = (%(%1)2+. St (*hh((%l)2 Now by hypothesis, f(a) =
g(a)/h(a) is defined; i.e. h(a) # 0, so each f;(a)/h(a) is defined. (]

Let now m > 1. Let L = K(X1,...,Xm—-1). Assume the result for
m — 1 variables and let ¢(X1,...,Xn)/h(X),...,Xm) be a rational func-
tion which is a sum of n squares in K(X),...,X). Regard g/h as a
rational function of X, belonging to L(X,.). So by the case m =1, we
see that ¢(X,..., Xm_1,am)/R(X1,..., Xm—1,am) 18 a sum of n squares
in L = K(X;,...,Xm_1). So by the induction hypothesis g(ay,...,am)/
h(ay,...,am) is a sum of n squares in K. This completes the proof of the
corollary.

a

Corollary 2. Suppose n = 2™. Let G,, be the set of all non-zero ele-
ments of K which are sums of n squares in K. Then G, is a group under
maultiplication.

Proof. Let af € Gpsay,a = a2+ ...+ 02,8 =% +...+ B2 Then
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a!'=aja® = (a1/a)t + ... + (an/a)? € G, and it remains to prove that
af} € G,. Consider the identity

(XP+ . + XDV 4. +YH)=22+...+ 22
which exists since n = 2™. In this let X; — oy,..., X, = a,,¥; —
Bry..., Y, = Bn. Then the left side is well defined and equal to a8 and so

by Corollary 1, the right side is a sum of n squares of elements of K, i.e.
aff € G, as required. (I

We see that it is the identity (2.1) that does the trick.
We can now prove the first part of Theorem 2.2: s(K) is always a power
of 2.

Proof of the first part of Theorem 2.2. Let
n=2"<s(K)< 2™t (2.5)

Thena? +...+a2 +a%,; +...+a2+1 =0 (aj € K). Let A =al+
...+ai,B=a%,  +...+a’+1. Here A, B are both non-zero, otherwise
s(K) < s. Also A, B both € G, (by adding a suitable number of 0?’s to B
if necessary). Then A+ B=0so A= —Bie —-1=B/A€ G, since Gy, is
a group i.e. —1 =c¢j + ...+ c2 giving s(K) < n. Comparing with (2.5) we
get s(K)=n=2™. O

To prove the remaining parts of Theorems 2.1 and 2.2 we need to deduce
some more corollaries from Cassels’ lemma; see [C2].

Corollary 3. Let charK # 2. A necessary and sufficient condition for
X% +d € K[X] to be a sum of n squares in K(X) (and so in K[X] by
Cassels’ lemma) is that either

(i) —1isasum of n— 1squaresin K or

(ii) dis asum of n — 1 squares in K.

Proof. If —1 =02+ ...+ b%_,, then for any polynomial f(X) € K[X], we
have

() (1 () ()
+ot (__b"—l(f—l)y‘

2

In particular X? 4 d is a sum of n squares.
If d is a sum of n — 1 squares then visibly X? + d is a sum of n squares

in K[X].
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For the converse, suppose X% + d is a sum of n squares in K[X]. If (i)
holds, well and good; otherwise let X? +d = p}(X)+...+p2(X) say. Here
we may suppose the p;(X) to be linear poynomials in X for if not, then
equating to 0 the coefficient of the highest power of X gives (i). Then

X2 t+d=(a; X +b) +... 4+ (@ X +b,)° (2.6)

Now one of the equations C = X(anC + b,,) is always solvable in K. For

if ap, # 1 then C = +(a,C + b,) is solvable, while if @, = 1 then C =
—(a,C + by,) is solvable since char K # 2. Now put X = C in (2.6):
C?’+d=(a1C+ b))’ +...+(an1C + bn1)® + (@nC + b )*.

Cancelling C? with (@,C + b,)? we see that d is a sum of n — 1 squares in

K. This completes the proof. d

Corollary 4. Let R be the field of real numbers. Then X} +...+ X2 is
not a sum of n — 1 squares of elements in R(X,,..., X,).

Proof.  We use induction on n. For n = 1, the result is trivial. So
suppose the result is true for n — 1. Let K = R(X,,...,Xn-1), X, = X
andd=X?+...+X2_,. If X} +... + X2 is a sum of n — 1 squares in
K(X)=R(X,,...,X,), then by Corollary 3,d = X? +...+ X2_, is a sum
of n — 2 squares in K, since —1 is clearly not a sum of n — 2 squares in
K - indeed not a sum of squares at all in K, which is formally real. This
contradicts the induction hypothesis and completes the proof of Corollary 4.

a

We are now in a position to complete the proofs of the remaining parts
of Theorems 2.1 and 2.2.

Every power of 2 1s the Stufe of some field K.

Proof. Let n =2™ and let K = R(Xy,...,X,41,Y) where X,,...,Xnn1
are independent transcendentals over R and Y satisfies the equation
Yi4+Xi+...+X,=0 (2.7)

We claim that s(K) = n = 2™. In any case by (2.7) s(K) < n + 1 and so
is at most n since n 4+ 1 cannot be a power of 2 whereas s(K) is (except in
the trivial case n =1 i.e. m = 0).

If s(K) < n then there exist t,...,t, € K, not all zero such that

ti+...+t2 =0 (2.8)

Let L = R(X1,...,Xn41) so that K = L(Y). By (2.7) Y is algebraic over
L of degree 2 and so each element of K is a linear polynomial in ¥ with
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coefficients from L. Write ¢; = a; + Y'bj,a;,b; € L. Then by (2.8) we see
that
Za§ +Y? Z B =0
Z ajb_,- =0.

Here not all the a; are zero, otherwise 3 b2 = 0 and so each b; = 0 since
the b; € L = R(Xy,...,Xn41) is formally real. Then each ¢; would be zero
which is not true. Similarly not all the b, are zero. Hence

and

Y2 = Zaz/ Eb? € G, (by the group property of G,)

j=1  j=1
=cf+...+c?,, say c; € L,
ie. X?2+...+ X2, is asum of n squares in L which contradicts Corollary
4. Thus s(K) is not less than n and so equals n. This completes the proof.

a

Remark. The proof also works for Q(X,,...,Xnt+1,Y).

Finally we prove the remaining part of Theorem 2.1.
Suppose n i3 not a power of 2. Then there is a field K such that there is
no identity
(X2 4. + XDV 4. +YH =22+, + 22
with Z; € K(X,,..., X, 11,...,Y5).

Proof. Let 2™~ ! < n < 2™. Let K be a field having Stufe 2™ = v,
say. Thena?+ ...+ a2 +a2 1 +...+a2+1=0. Let A=al+...+ a2,
B =a?,,+...4+a+1; hence A, B € G, and if an identity of the above type
exists, then Gy, is a group (see the proof of Corollary 2). So -1 = B/A € G,
ie. —=1=C?+...+C? (C; € K) hence s(K) < n < v. But K was chosen
to have Stufe v. This gives a contradiction and so completes the proof.

(]
Remark 1. In our examples of fields with high Stufe both the fields
R(X,,...,Xus1,Y) and Q(Xy,...,Xn41,Y) are of high transcendence de-

gree over R or Q as the case may be. We have the following

Problem: Does high Stufe always imply high degree of transcendence?
(over R or Q).

Remark 2. A result more general than Cassels’ lemma is the following:
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let K be a field with charK # 2 and let f(z) € K[X] be a polynomial such
that
fX)=ari(X) + ... + an7a(X)
where a; € K and v;(X) € K(X). Then
f(X)=o1fi(X)+... + anf2(X)
where f;(X) € K[X].
For a proof see [P5].

Remark 3. In the proof of the Theorem 2.1, instead of taking
71 T(@)
T= (Tm X
and wondering why the second row began with 7®), we could take

T1) T@)
ro (10 10).
Then our requirement (2.4) leads to the equation T('TM + Y'Y = (X2 +
et X2+ + X2 n e Y'Y = (X2, +...4+ X2, )].. Now one solution
of this is Y = T(® by (2.3). So it is natural to take ¥ to be this solution
and not look for any other. The rest now goes through as before.

Remark 4. Corollary 2 about the group property of G,(K) is so impor-
tant that we would like a direct proof of it. This we now give.

In Theorem 2.1, we proved we could take the Z; to be linear forms in
the Y; with coefficients in K(X,,...,Xn). What is the nature of these
coefficients? How simple can we take them? Can we make at least some of
them linear forms even 1n the X,’s? The answers to these questions will be
given in Chapter 13. For the time being we prove here a result about the
form of the first term Z,. This approach will lead to an independent proof
of the important group property of G,(K) (n = 2™). We have the following
result.

Theorem 2.3. Letn=2" and let X),...,X;11,...,Y, € K. Then
(XZ4 . + XD+ . +YH) =X+ + XY+ 22 +... 4+ 22
for some Z5,...,Z, € K.

We first need the following easy

Lemmal. Letn=2™ andletc=c2+...+c2 (c; € K). Then there ezists
an n X n matriz S with first row = (¢y,...,¢n) such that S8’ = 5'S = cl,.

Proof. First let ¢ = 0. If all the ¢; = 0, we take S to be the zero matrix.
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So suppose, say, ¢; # 0. Let R be the row vector (ci1,...,cn) and take
S = ¢;'R'R, which has first row R as required. Further

58S =c['R'Re['R'R
=c¢;*R'(RR"R
=0,

since RR' = 2+ ...+ ¢ = ¢ = 0. Similarly §'S = 0 and the proof is
complete. So we may now suppose that ¢ #£ 0 and we proceed by induction

on m.
Wirite
R=(c1,...,com) =(C1,...,Com-1,Cpm-141,...,Com)
= (B, R,).
Leta=¢:f+...+¢:§,,,_l,b=433,,,_,4_l +...4 2, so that ¢ = a + b. Here

since ¢ # 0, so a, b, cannot be both zero; say, without loss of generality, that
a # 0. By the induction hypothesis, there exist square matrices 57,5, of
size 2™ ! such that

SIS{ = S{ S] = aIzm—l

528, = 5,83 = blym-1.
Furthermore the first row of S; is (¢1,...,cpm-1) and that of S, is
(cgm-141,...,¢5"). Now let

5= (s, 5
—-a"151836, S )7
This has first row equal to R as required and an easy matrix computation
gives SS' = 8§'S =cl,, eg.

SS! = S S2\ (S -a7'85185:5
- —a'lS{S'z.S'l S{ Sé Sl

_ albm-1 + bIzm—l —a_la5251 + 52,5,
=\ —a 1818 alm + 515, a=25555,5,5,5 + 5.5, )

_ CI2m—l 0 _
- ( 0 bIzm—l + aIzm—l ) - CIZ"‘

Proof of Theorem 2.8. Write
X=X]+...+X}
Y=Yl2+...+Y"2.
Then there exist n x n matrices U,V such that UU' = U'U = XI,,. VV' =
V'V =Y, and
U has 1st row = (Xy,...,X,),
V has 1st row = (¥1,...,Yq).
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Then
XYL, =XVV' =V({U'U)V = (VU'XVU") =VUU)V' =WW',
where W = VU'. This equation says that if (Z,,...,Z,) is the first row of

W then XY = Z? ...+ Z2. But since W = VU’, we have Z; = X,Y; +
e+ XY O

Mathematics is rarely humorous enough to provoke laughter. However,
on taking K to be the field of real numbers, and writing a; for X;, 8; for
Y; and (2,...,(n for Z3,...,Z,, the above gives

n

2
Yoaid 8= (Z%ﬂj) FC2 4.+ (2
j=1 j=1

i=1
. 2
> (Z a,-ﬁ,-)
j=1

and as T.Y. Lam remarks, this gives us a hilarious proof of the Cauchy—
Schwartz inequality.

The group property of G,(K) (n = 2™) now follows, since Theorem 2.3
implies closure.

The simplicity of Z; can be used to much advantage as we shall see in
the next chapter.

While we are at it we shall give another easy approach to the proof of the
group property of Gn(K).

Let f(X1,...,Xn) = f(X) and ¢(X) be quadratic forms over K. We call
them equivalent over K and write f~g, if there exists a non-singular linear
transformation Y = TX i.e.

Y: = Zt,']‘Xj (1< n),t.-j €K
=1

such that ¢(X) = f(TX) identically.

Definition 2.2. Denoting
My(K)=M; = {c € K*|cf ~ f},

we call ¢ a similarity factor of f over K.

Lemma 2.

(1) My is o group under multiplication.
(i) My(K)>K*

(1) of f~ g then My = M,.
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Proof. Let ¢1,c2 € My so that

(LX) = af(X),

(T X) = ez f(X).
Then f(T\T2X) = ¢, f(T2X) = cic2f(X) and f(T; 'X) = c;' f(X). This
proves (1).

Next if d € K*, then f(dX) = d*f(X) i.e. d®f ~ f or d> € M, giving

(ii).
Finally if f ~ g then cf ~cg (c € K). Hence f ~ cf iff ¢ ~ cg. This
proves (iii). d

Definition 2.3. Let Vp(K)=V; = {c € K*|c= f(V),V € K"}, i.e. the
set of non-zero values taken by f over K.

Lemma 3. Letb€ Vy,c€ My. Then bc € V.

Proof. Let b= f(V),V=(W,...,,Va) (V; € K)and f(TX) = cf(X).
Then bc = f(TV) d

Now let us return from general quadratic forms to sums of squares and
write pn(X) = X7 + ... + X2. Then

Theorem 2.4 (Pfister). Let n = 2™ be a power of 2; then M, =
Veon-

The key to Theorem 2.4 is the following.

Lemma 4. Letd € M, and supposed+1#0 thenl+de M,,,.

Proof.

P2n(X)=XI+.. + X2+ X2, ...+ X2,

= on(X') + @a(X")

where X = (X;,...,X0,), X' = (X1,..., X)), X" = (X,41y. .-y X2p). Here
pa(X") ~ dp,(X") since d € Mpn. Hence pr,(X) = pa(X') + @a(X") ~
oa(X") + dpn(X") = 9, say. Thus to show 1 +d € Mpan, it is enough to
show that 1 + d € M. Now, putting

i=X1-dXap Yo = X1+ Xapa

Yo = Xy —dXnye and Yoio = X5 + Xngo

Y,.=X,.—dX2,. Y'2n=Xn+X2n,

(2.9)



26 Squares

we get
A+dpX) =1+ d)(Xi+.. .+ X2 +dX2, +...+dX3)
=Y 4.+ YEHdY2, 4.+ dYE
=91, Y2,..., Yo, Yaqr,..., Yan),
= ¥(Y)

as required. O
We also enunciate the trivial

Lemma 5. My, C Mp2,.

We now give a

Proof of Theorem 2.4. Here n = 2™. Use induction on m. So suppose
V. = My, and we have to show that Vo, = Mp,,. Now trivially 1 €
Voo (put X7 =1,X; = ... = X2, = 0) so by Lemma 3, Mps,, C V.
On the other hand, by (2.9) it follows that any C in V¢, has one of the
forms

(i) C=C€Vyp,
(il) C=Ci14+Cy (C1,C2 € Vey).
In the first case, from the induction hypothesis,
Cir € Vo, =Mp, C Mpsn
by Lemma 5. In the second case, Cy,C; € Vo, = My, by the induction
hypothesis and so
C=C+Cr=Ci(1+C;'C2) = Cy(1 +d)
say, where d = C['C2 € My, since My, is a group by Lemma 2. Here
Ci1 € Mp3, (by the first case) and 1 + d € Mgy, (by Lemma 4). Hence
C =Ci(l+d) € Myz, as My, is a group. So Ve, C Mya,. O

Now by Lemma 2, My,, is a group and Ve, is just an alias for G,; so
G, is a group. a

Exercise. For a quadratic form ¢ defined over K show:
(1) if a,d € K* then d € Vp(K) iff a’d € Vp(K);
(ii)) Vp(K) is a union of cosets of K* modulo K*.

We call K*/K ** the group of square classes of K. Then, by abuse of
notation, Vo(K) can be regarded as a subset of K*/K **. We shall have
more to do with these square classes in Chapter 16.
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Exercises

1. Give examples of quadratic fields of Stufe 1, 2, 4.

2. Prove directly that 3 can not occur as a Stufe. This is the simplest case
of van der Waerden’s problem (1932) enquiring which numbers can occur
as a Stufe. (If =1 = 22 +y2 + 2% i.e. 0 = 1+ 2% + y? + 2? then multiplying
by 1+ z? gives
0=(1+2)" + (1 +2)(y* +2%)
= (145 + (y +22) + (2 - z)?,
by (1.1). Now 1 + z2 # 0, for otherwise the Stufe equals 1 so the above

gives —1 = ({1’—:;—)2 + (;—;3‘)2 i.e. the Stufe < 2. O

3. Let Fgq be the field of ¢ = p* elements. Prove that
s(Fq) = 1 if either p = 2 or p = 1(4) or p = 3(4),2|a,
9= 2 otherwise i.e. p = 3(4),2 fo.

4. Prove that the field R(X) is formally real where R is the real number
field.

5. Let K be a field of Stufe s. Prove that each element of K is a sum of

$ + 1 squares in K.

6. For a natural number n and any field K, let
Gu(K)={a€K'la=d?+...,a2,a; € K}

so that K** C G1(K) C Go(K) C ... C Go(K) C ... C K*. Prove that if

s(K) =n then G,41(K) = K* (cf. Exercise 5.)

7. Prove that if s(K) > n then, using Corollary 4

G.K(X1,..., Xo) & Gun1(K(X1,..., X0)).
8. Prove that if (7, s,n) is admissible over K, then for any field F D K,
G (F) - G,(F)C G, (F).

9. We know from Exercise 4, Chapter 1, that (3,5, 7) is admissible over any
field K so that G3(K) - G5(K) C G7(K). Prove that equality holds.

Ifa = a?+...+a} € G7(K) then without loss of generality a2 +a2+a2 # 0
s0
a = (ai +a; +a3)(1+(¢f + af +ai + a7)/(a] + ] + a3))
= (a? + a? + a3) x {a sum of five squares},

since the quotient is an element of the group G4(K) € G3(K)-Gs(K). O
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10. Use Exercises 7, 8 and 9 to prove that there exist fields K over
which (3,5,6) is not admissible. (Hint; the admissibility of (3,5,6) over
K implies G3(F) - G5(F) C Ge(F) for all F O K (by Exercise 8), so by
Exercise 9, G¢(F) = G7(F) for such F. But if s(K) > 6, then by Exercise
7, there exists a field F 2 K such that G¢(F) & G7(F). Hence if s(K) > 6
then (3,5, 6) is not admissible over K.)
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Examples of the Stufe of fields
and related topics

Before we take up specific examples, we would like to say something about
how representations of an integer as a sum of squares (SOS) in Q is related
to that in Z, and indeed more generally about how the representation of
an element a of an integral domain A as an SOS in A is related to the
representation of a as an SOS in the field of quotients F' of A. We paraphrase
our questions more explicitly as follows:

Question 1. If @ € A is an SOS of n elements of F' then is a an SOS of
elements of A?

Question 2. If the answer to Question 1 is ‘yes’, then is @ an SOS of the
same number n of elements of A7

The lemma of Cassels proved in the last chapter is an excellent example
of a problem of this nature, where the answer to both the above questions
is given in the affirmative (A being the ring K|t], K a field). Note that the
answer to the first question was proved to be in the affirmative by Artin
already in 1927; but the second was not answered then.

Another very instructive example is provided in the case A = 7, so that
F = Q; the answers to both the questions being in the affirmative and this
result is often called the Davenport-Cassels lemma. However, the proof of
the result as well as the method goes back to Aubry (1912) (see [A7]) and
so more appropriately it ought to be called the Aubry Lemma.

Theorem 3.1. Let n be a positive integer which i3 a sum of three squares
of rational numbers; then n 1s a sum of three squares of integers.



30 Squares

Proof. Suppose n = A? + A2 + A2 (); € Q). Clearing denominators we
may write this as
t'n=pl +ud +p3 (4 €1) (3.1)
with ¢ € Z minimal. We shall show that t = 1.
Write p;/t = y; +z; with y; € Z,]z;| <1/2 (j =1,2,3). If 23, 2, 23 are
all 0, then p;/t € 7 and so by the minimality of ¢,¢ = 1. So suppose not all
zj are 0 and let

a=yi+y;+yi—n (3.2)
b=2[nt — (u1y1 + payz + pays)] (3.3)
! =at+b
;t;- = apj + by; (3.4)

Then a,b,t' € Z and using (3.4) we get
B g+t =a® Y i+ 8y +2ab )
= a®(t*n) + b*(a + n) + ab(2nt — b)
(using (3.1) — (3.3))
= n(at + b)?
= nt" (3.5)

Thus (3.5) gives a representation similar to (3.1) where we shall show that
t' < t giving a contradiction to the minimality of . Substituting for a,b
from (3.2), (3.3), and then for nt? from (3.1), we have

tt' =at? + bt
=t*(y} +v3 +v3 —n)
+ 4(2nt — 2(pryy + p2y2 + pays))
=2y -2t pyi+ ) K
= (ty; — ;)

=t*(2f + 23 + 23)-

Thus
M= t(zl2 + zg + zg)
< H((1/2)° + (1/2)* +(1/2)%)
3
T4
as required. O

Remark 1. There is a striking similarity (in addition to the method of
descent used in both cases) between the method of proof of
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(i)  Cassels’ lemma of Chapter 2
(ii)  Aubry’s lemma proved above.

Remark 2. As may be expected, the answers to both the questions at
the start of this chapter depend on the number n and on the nature of the
domain A. The following are some examples exhibiting a variety of answers:

(1) A= K[t] (K any field); then the answers to both the questions are
‘yes’.

(2) A=1[i]. Theni = (3—“2&)2 + (3—“2ﬂ)2 is a sum of two squares in F,
the field of quotients Q(7) of 4, but 7 is obviously not an SOS of any
number of elements of A.

It may be suspected that the example in (2) works that way because 2 is
not invertible in A. That this is not really the case is shown by the following
example (where 2 is invertible in A).

3) A=R[X,,X.,...,X4], d>2. According to Hilbert [H3], there exist
polynomials f € A, which are positive semi-definite (i.e. f(a,,...,aq)
> 0 for all a; € R) with the property that f is not an SOS in A. By
Artin’s solution to Hilbert’s 17th problem [A6], f is always an SOS in
the quotient field R(X4, ..., Xq) of 4; indeed by a theorem of Pfister’s,
24 squares suffice.

All three statements will be proved in later chapters. As a concrete ex-
ample we have Robinson’s polynomial (form), see [R8],

f(X,Y,2)=X*'Y?+Y*Z? 4 Z2°X* - 3X?Y* 72,
which is non-negative by the Arithmetic Geometric Mean Inequality applied
to the numbers X*Y? Y*Z2 Z4X?. But f is not an SOS in R[X,Y, Z]; a
proof of this will come later. However, in R(X,Y, Z) we have explicitly
X4Y2(X2 + Y2 . 222)2 + (XZ _ Y2)2(X2Y2 + X?zZ + Y4)22
(X2 + Y?2)2 ’

f=

which is a sum of four squares.
For further information on this topic see the Choi, Lam, Reznick, Rosen-
berg paper [C15].

Remark 3. There is a proof of Theorem 3.1 given by Serre in [S2]. He
calls it the Davenport-Cassels lemma.

As our first example, we shall calculate the Stufe of quadratic fields. We
have the following.

Theorem 3.2. Let D > 0 be a square-free integer; then the Stufe s(K) of
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K =Q(V/-D)is

1 ifD=1,
{ 2 ¥D#8+T,
4 ifD=8b+T.
If D <0, then K is formally real of course.

Proof. (Rajwade [R3]). Writing D = a? + b? + ¢? + d%, when a,b,c,d € Z
we see that 0 = (/ — D)? + a? + b% + ¢% + d?, and it follows that s(K) < 4.
Now s(K) = 1 if and only if /=1 € K and this happens only in the case
D =1. If D # 7 (mod 8), then D is a sum of three squares and so
0 =(vV=D)? +a® 4+ +c? so s(K) < 3. But now ~1 = a? + 32 + 42 implies

2 2
= (&5) + (755) 9

so s(K) = 2 since D # 1. Note also that a® + 8% # 0, since otherwise
s(K) = 1. Finally let D = 7 (mod 8). If s(K) were less than 4, then it
would be equal to 2, i.e.

—1=(a1 + bvV=D)* + (a2 + bV—-D)*, ay,b,a2,b; € Q.
Here without loss of generality, we may suppose that 5; # 0. Equating reals
and imaginaries we get the following two equations:

a+al - Db +b3)= -1

a1by + azb, = 0.
These imply D = (%)2 + (#!—172)2 + (Tflizl?;)z Thus D is a sum of

three rational squares, which is a contradiction since D = 7 (mod 8). Thus
s(K) £ 4. This completes the proof. (]

In the proof we have used the 3-square theorem, viz. if D # 7(8), then
D is a sum of three squares in Z. Actually Theorem 3.2 and the 3-square
theorem are equivalent. Indeed we have the following (see [S8]).

Theorem 3.3. Let m > 1 be a square-free integer. Then m is a sum
of three integral squares (or equivalently rational squares by the Davenport-

Cassels Lemma [S2]) if and only if s(Q(v/—m) = 2.

Proof. First let m = a? + % +c? in Z, and so in Q and hence in Q(v/=m).
Then a® + 8% + ¢ + (vV/-m)? =0 in Q(,/——m) i.e. —1is a sum of three

squa.res in Q(v/—m) and so by (3.6), s(Q(v/—m)) = 2 (since s = 1 gives
=1 and the whole thing is then tr1v1a.l)

Conversely let —1 be a sum of two squares in Q(1/—m). Then 0 is a sum
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of three squares and so a sum of four squares (trivially by adding a 0?) in
Q(v-m):
4
0= (aj +b;y~m)* (a;,b; € Q)
j=1

Then }_a? —m b2 = 0 and 3 a;b; = 0; hence

m(Y_ )" =m(Q_ Q) = Qo aN(_b)
= (Zajbj)2 + the rest of the Euler identity

=0+ a sum of three squares.
Here 3 b2 # 0, otherwise b; = 0 for all j; giving Eaf =01ie a; =0 for
all j. Thus m is a sum of three squares in ¢ and so in Z by Theorem 3.1
(the Aubry Lemma).
This completes the proof (see also [R6] in this context).
Our next result deals with finite fields.

Theorem 3.4. Let Fy be the finite field of ¢ = p™ elements then

s(Fq) = 1 ifeitherp=2orp=1(4),orp= 3(4),2|a
77 12 otherwise i.e. if p=3(4),2fa

Proof. First let p = 2. Then —1 = 1 = 1? giving s(Fya) = 1. Next if
p = 1(4) then (—1/p) = 1 ie. 1 = z? is solvable in F, C F,a (for all a). So
s(Fpa)=1.

Let now p = 3(4). Let A = {-1—X*X =1,2,...,2*, 0} and B =
{Y2|Y =1,2,...,25% 0}, both in F,.

Then [A| = |B| = (p + 1)/2. Hence by the pigeon-hole principle there
exist Xo,Yo € Fp such that -1 —XZ = YZ i.e. =1 = X2 +Y7inFp; but —1
is not a square in F, since p = 3(4). It follows that s(F,) = 2 if p = 3(4).

Now Fp2 = F,,(\/-:l-) and here —1 = (v/=1)?, so s(Fp2) = 1. But Fpa D

F,2 if 2o s0 F e has Stufe 1if 2|a. If s(F e ) = 1 even for 2}’(1 then —1 = X?

is solvable in Fpa (2fa), so Fpe D Fp(X) = Fp(v/—1) = F,2 which is false
since 2 Jo. Hence s(Fpe) = 2 if 2 }Ja.
This completes the proof. O

Our next aim is the cyclotomic fields. Actually it is well known how to
compute the Stufe s(K) of any algebraic number field K by using the Hasse-
Minkowski theorem, which in the first place tells us that s(K), whenever
finite (i.e. whenever K is totally complex), is at most 4 (a special case of
Siegel’s theorem). Indeed we have the following result:
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Let K be a totally complez algebraic number field. Then s(K) < 4. Fur-
ther s(K) = 4 if and only if for all primes p|2, the local degree K, : Q2] is
odd.

As an immediate corollary we can deduce the following two results:

(1) Letd >0 be a rational and let K = Q(Vd), then s(KY=4 iff d # a
sum of three squares in Q.

(2) Let K = Q(¢),( a primitive p* root of 1, then s(K) = 4 iff the order
of 2 mod p 13 odd.

These results use the powerful Hasse-Minkowski theorem. We are in-
terested in elementary proofs of (1) and (2) (we have already proved (1))
allowing the use of Galois theory, the four square theorem in Q, but not
beyond Q, etc. Parts of the complete theorem can be done very simply
and elegantly and we shall not miss giving any such elegant proofs in their
proper place. Our aim is the following.

Theorem 3.5 (Shapiro and Leep). Letp be an odd prime, ¢ a primitive
p'* root of unity and K = Q(¢). Let d be the order of 2 mod p i.e. the least
positive integer such that 2¢ =1 (mod p). Then s(K) =4 iff d is odd (i.e.
s(K)=2iff d is even)

First of all it is not obvious that —1 is a sum of four squares in Q(¢) = K
(i.e. it is not obvious without using the Hasse-Minkowski theorem) and this
is the first thing that we must prove.

For p = 3(4), this can be proved very elegantly as follows. Let 7 be
the Gauss sum so that 7> = (—1/p) - p = —p since p = 3(4). If p = 3(8)
then p = a! + a2 + a2 ie. a? + a2 + a2+ 7> =0 or —1 is a sum of
three squares in K since 7 € K and so a sum of two squares in K, indeed
a?+a2+a3+(v/-p)? =0in Q(y/=p) C K so —1 is a sum of three squares
and so a sum of two squares (see Theorem 2.2) in Q(\/=p) C K. It follows
that s(K) < 2. If p = 7(8), then p = a? + a2 + a2 + a2 and we only get
s(K) < 4.

The method fails if p = 1(4). In this case we proceed as follows (the proof
also works for p = 3(4) again).

We know that K/Q is cyclic of degree p—1. Write [K : Q] =p—1=127-1
where t is odd. Then by Galois theory we have a tower of fields

Q=ECEC...CE,CK
where [E; 4y = E;] = 2,[K; E,] = t, all the E; are normal over Q and F;, =
Ei(+/d;), d; € Ef. View K as a subfield of C and let o be the restriction of
the complex conjugate to K. Clearly K ¢ R since —1 = ( 4+ (2 +... + (P}
is a sum of squares in K. Also o has order 2. Further F = Fix ¢ CR.

Now Gal(K/E,_,), a subset of Gal(K/Q), has order 2t and so it has a
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subgroup of order 2. Indeed being a subgroup of Gal{ K/Q), which is cyclic,
this subgroup of order 2 is unique viz. {(¢). Thus ¢ € Gal(K/E,_;) and so
o fixes E,_, 1.e. E,_; CR.

We now claim that for 1 < i < y — 1,d; is totally positive in E; while
d, -, is totally negative in E,_;. First let : <y —1. Then Vd; € E;;, CR,
so d; > 0 in the induced ordering. But each field involved is normal over
Q, so the same claim holds for every conjugate of v/d; and since E;;; CR,
it follows that every conjugate of d; is positive i.e. d; is positive in every
ordering of E; i.e. totally positive in E;.

Now K is not formally real since —1 is a sum of squares in K : —1 =
¢(+...4¢ " ie 22 +... + 22 represents 0 non-trivially in K. Hence by
the Springer theorem (see later in this very chapter), it represents 0 non-
trivially in E. as well because [K : E,] = t is odd. Hence E, is not formally
real, so there exists no embedding of E., in R, i.e. no ordering of E,_; can
extend to E., = E7_1(\/(H) i.e. d,_; is negative in each ordering i.e. is
totally negative.

Lemma 1. Let E = F(\/a) be a quadratic extension of fields where d s
totally positive. Suppose F has the property that any sum of squares in F
18 already a sum of at most 4 squares in F'. Then E also has this property.

Proof. (Landau (1919); see [L7]). Let a € E be a sum of squares in E (i.e.
is totally positive in E). We have to show that a is a sum of 4 squares in E.
Write & = a + bv/d (a,b € F). Since a is totally positive, so a,@ are
both positive in every ordering of E and every ordering of F' extends to E.
Then a? — db? = a@ = Na is positive in each order of E (since o, @ are)
i.e. is totally positive. Hence by hypothesis Na = z? + 22 + 22 + 22 in F
so a? = db* + Zz? in F. Now for any order < of F, since d > 0, we have
a® >3 z? > zlie a> z;. Also a+@ = 2a, 50 200 = a(2a) = a(a+@) =
o’ + a@. Hence
4
(a—z,)2 +23 422 +22 = a” — 20z, +Z$§
1
=0o?—-2az; + Na
= 2aa — 2az,
= 2a(a — 7,).
Since a — z, is totally positive it follows that
_(a=n))+zi+2]+25 > four squares
h 2(a —z,1) ~ Y four squares

«

= Z four squares in E. O
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Now apply this lemma successively to the fields of our tower. By La-

grange’s theorem, Q satisfies the property of the lemma so we see that

E,_, satisfies the property too. i.e. —d,_y =22+ 25+ 22 +23in E,_,

(since —d,_; is totally positive) i.e. —1 = E:(zj/,/d.,_lf in E, C K; so
8(K) < 4 as required.
So now we have proved that s(K) < 4 for the cyclotomic field K = Q((;).

Lemma 2 (Chawla - 1969). If the order d of 2 (mod p) is even, then
s(K) <2

Proof. Let d = 2m, then 22™ = 1(p) but 2™ # 1(p). Since (2™)? =22" =1
s0 2™ = —1 (mod p) i.e. p|2™ + 1 and so (*" ! =1 or

¢ =¢! (3.7)
Now recall the identity
(1-&-:1:)(1-}-.’1:2)(1-&-.’1:4)...(1+:l:2m_l)=1+:z:-}-.’1:2-0-...+:1:2m_1
= (="~ 1))z —1).
Putting z = (?, this gives
T+ A+ A+ = (D" -/ -1
= (T - /(¢* = 1),by (3.7)

= —¢2.
Hence —1 = (2(1 +¢*)(1+¢*)... (14 ¢*7) is a sum of two squares in K by
a repeated application of the 2-square identity. d

Note that if p is odd, then s(K) # 1; for otherwise /=1 € Q(¢p), but
Q(\/-:l-, ¢p) = Q(C4p) so this cannot be. Alternatively we know that the
unique quadratic field contained in Q({,) is Q(1/£p) by the Gauss sum.

Thus, so far we have proved that if K = Q((;),p an odd prime and d =
the order of 2 mod p, then s(K) = 2 if d is even while s(K) =2 or 4if d is
odd.

For the remaining part of the theorem, we shall use the following (well
known) result.

Lemma 3. Let ¢p(X) = X?7' + ... + X + 1 be the cyclotomic poly-
nomial-irreducible /Q and let d be the order of 2 (mod p). Then B,(X)
(i.e. ©p(X) reduced mod 2 i.e. in Fy(X)) factors as a product of (p — 1/d
distinct irreducible polynomials, each of degree d. Indeed, more generally if
g, g prime, then B,(X) i.e. pn(X) reduced mod ¢ i.e. in Fo(X)) factors
as a product of p(n)/d distinct irreducible factors each of degree d, where d
is the order of ¢ (mod n).
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We can now prove the following

Lemma 4. If the order d of 2 (mod p) is odd then z% + y* + 2% does not
represent 0 nontrivially in K = Q(() i.e. s(K) > 2.

Proof. Suppose to the contrary. Then there exist ¢;,¢2,¢5 € Q((p), not
all 0, such that ¢? 4 ¢ + ¢Z = 0. Clearing denominators, we may suppose
that the ¢; € Z[(;]. Choose f;(X) € Z[X] of degree at most p — 2 with
fi(¢) =¢; ( =1,2,3). Then, in Z[X]

F(X) + F1(X) + f5(X) = 0(mod pp(X)). (3.8)
Further, without loss of generality, fi, f2, f3 are relatively prime in Z[X],
for any common factor can be factored and omitted from (3.8) since ¢,(X)

is irreducible.
For some h(X) € Z[X], write (3.8) as
RX)+ (X)) + £(X) = ¢p(X) - h(X). (3.9)
Comparing degrees, we get p — 1+ deg h < 2(p — 2), i.e
deg h(X) < p-3.
Now reduce (3.9) mod 2Z[X] to get, in F[X],
(?1 (X)+ 72(){) + Ta(x))2 = _(P—p(X) -h-(X)
(the cross terms on the left are all zeroin F,!). By Lemma 3, factor 3,(X) =
91(X)g2(X)...g-(X) into distinct irreducible factors in F2[X] (all square-
free).
If 7 (X)+ —fz(X) + 73()() # 0, then 3,(X) - Z(X) is a square and so
(X) = B,(X) - k*(X) for some k(X) € Fg[X] But then deg h > deg
¢p = p— 1, which is a contradiction. Hence fl + f2 + f3 =Qandso h=0
in Fg(X) ie.

f3= f —fa=Ffi+Fs

(since —1 = 1) and h =0. In other words,
fa=hHh+fo+29,h=20"

for some g(X), h*(X) € Z[X]. Plugging this back in (3.9), we get

L+ +f+2fifa+ f7 +49(fi + f2) + 497 = 20,07,
ie.

fi+f1fa+ 7 +2(fi + f2+ 9)9 = pph* in Z[X).
Now again reduce mod 2 to get
F+hh+ =30
=g192...9-h in Fy[X].
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Let 9 be a root of g;. Since deg g; = d so the field extension L = Fy(9) is
of degree d over F; i.e. L = Fya4, the finite field of 2¢ elements.

Let a1 = f,(9),a2 = F2(9) (F1(X), F2(X) evaluated at X = 9 in L).

2

Then a?+a3+araz = 0in L. If ajaz # 0 then this gives (ﬂx) +(§§)+1 =0
in Li.e. g*isaroof of X?+X+1 =0in L and this polynomial is irreducible
[Fa.

We thus get a tower of fields as shown. It follows that 2|d, which is a
contradiction, since d was supposed odd. Hence a; = az = 0 ie. for every
9, a root of g; (any j), we have f,(9) = 0= f,(9).

A ¢ Fou=1L
ay
2
\J o Fy

that is g; |T_l,—f_2 for all j =1,2,...,r. By the uniqueness of factorization,
we get ,|f,, fy, but then deg f; and deg f2 > p — 1 which is again a
contradiction. This finally proves everything. d

Remarks. (1) For p = 7(8), P. and S. Chawla [C6] determine the Stufe
of Q(e2™/?) by another method as follows.

That s(K) < 4 follows as before using the Gauss sums. Suppose to the
contrary that s(K) = 2. The elements of K are polynomials in ¢ = e2*¥/?
of degree at most p — 1 with rational coefficients. So let

~1=f2()+¢*(¢) (3.10)

Let o, : ( = (" (r=1,2,...,p— 1) be the automorphisms of K/Q. Apply
o, to (3.10):

—1= (¢ +4%(¢N) (3-11)

2 2
=ar+br7

say. Here a, # 0, otherwise s(K) = 1, which is false.
Let Ry = {ry,73,...,7(p—1)/2} be the set of all quadratic residues mod p
and let

b,- b b
1 r2 r
Ps Zn e Tn
rn<.<r, Gry  Gr, ar,
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be the s'* elementary symmetric function in b,/a,. Then

H (ar + b)) = H a, - H (1+b./a,)

re€R, r€Rp r€Rp
= H ar((l=p2+ps—..)+i(pr—ps+ps—...))
réR,
=A(¢) + B(¢), (3.12)

say. The second line is easy to see by considering, for example, the case
p=T. Now for r € R,, the automorphisms o, keep A(() and B(() fixed;
for as r runs through R, so does ryr for any r, € R, hence o, keeps the p;
and Ila, fixed thus A, B fixed. Thus

A(("y = A(€),B(¢") = B(¢) for all r € R,

Now these o, form a subgroup T of order (p — 1)/2 of Gal(K/Q) and so
its fixed field L is a quadratic extension of Q. This extension is Q(y/=p),
for \/=p = Y_(" (2 Gauss sum) is kept fixed by I' and so this fixed field
L D Q(y/=p). But L is a quadratic extension of Q and so L = Q(/~p).

Now since A, B are fixed under T, so 4,B € Q(\/=p); say A = a +
b/=p,B = ¢ + d\/-p,a,b,c,d € Q. Now multiply the various equations
(3.11) for all r € R,:

(—1)lP=1/2 = H (a? +b%) = H (ar +1by) H (ar — ib,)

TERP TeRp reRP
= (A+iB)(A—iB) (by (3.12))
= A?+ B?

= (a+bv/=p)" + (c + dv=p)*
Equating reals and imaginaries, we get
—1=a? 4+ ¢ - p(b* + d?) and
ab+cd=0.
Hence p = c?/b% + (b/(b% + d?))? + (d/(b* + d*))?; i.e. pis a sum of three
squares in Q which is a contradiction since p = 7(8). This completes the
proof. O

(2) (S. Chawla [C5]). Let K = Q(e*™/™), where n = 3(8) is a positive
integer, then s(K) = 2.

Proof. First note that if n = 3(8), then v/—n € K. For, writing ¢ = 2™/,
then the Gauss sum

n—1
> ¢ =iva= Vo,
=0

since n = 3(8). Now write n = tm, where m is square-free. Then m = 3(8).



40 Squares

Further Q(v/—m) = Q(v/—n) = K, and by Theorem 3.2, s(Q(v/-m)) = 2.
It follows that s(K) = 2, since it is not 1. 0

(3) Indeed if n is any integer n > 3 and if there is an m = 3(8),m|n,
then s(Q(e?™/™)) < 2 (note that in the last, strict inequality can occur for
ezample when n =12, m = 3).

For Q(e?™/") D Q(e2™/™) and the Stufe of Q(e2™/™) = 2.

For a general cyclotomic field K(™) = Q(e?™/™) if 2|jm then K(™ =
K(™/?) where m/2 is odd. If 4|m then /=1 € K™ and so the Stufe of
K(™) = 1. We may therefore suppose m to be odd and at least 3.

Let p be any prime dividing m. Then (e””’“)""” € K™ je /P ¢
K s0 Q(e2™/P) < K(™)., Since the Stufe of Q(e?~*/?) < 4 (Theorem 3.5),
we see that the Stufe of K(™ < 4 and so equals 2 or 4, since i ¢ K™ m
being supposed odd. The complete classification giving conditions under
which the Stufe is 2 or 4 uses the Hasse-Minkowski theorem and we postpone
its proof to Chapter 18.

Algebraic number fields

Let K be an algebraic number field i.e. a finite extension of the rationals
Q. Then K = Q(a) and if f(X) = irr(a, Q) is of degree n, then [K : Q] = n
and each element of K is a poynomial in « of degree at most n — 1 with
coefficients in Q.

Suppose f(X) has r real roots and s pairs of complex conjugate roots. If
—1is a sum of squares in K, say

-1=p¥a)+ pi(a) +... (3.13)

and a' is a real root of f(X), then applying the isomorphism a — o to
(3.13) gives

~1=gi(a') +p3(a) +... >0,
since o' is real, - a contradiction. Thus if —1 is to be a sum of squares in
K, then all the roots of f(X) = 0 have to be non-real - in particular n is
even. Such a K is called totally complex.

The converse is also true viz. that if all the roots of f(X) are non-real (i.e.
K is totally complex) then —1 is a sum of squares in K. Indeed —1 is a sum
of at most four squares in K. This result again uses the Hasse-Minkowski
theorem and we postpone its proof to Chapter 18. However, elementary
proofs giving the result s(K) < 4, even for a given class of totally complex
fields will always be desirable. The next class on the list would be the class
of all totally complex quartic fields.
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Our definitions tell us that a field K is totally complex iff K is not formally
real. Soif —1 is not a sum of squares in K, it does not mean necessarily that
K CR. For example let K = Q(/2 - w) where w = (=1 + /=3)/2. Then
K ¢ Rbut still —1 is not a sum of squares in K since irr((V/2-w), Q) = X*—2
and this has one real zero viz. /2.

We now look at a few very useful results applicable to general algebraic
number fields - these will include Springer’s theorem on odd degree extension
fields. This we have already used during the proof of Theorem 3.5 and so a
proof is no doubt due.

We start with the following

Theorem 3.6 (Pfister). Let L = K(a) be an algebraic eztension of fields
and let p(X) = irr(a, K). Suppose L is not formally real (i.e. is totally
complez); then

—1 1s a sum of 2"~ ! squares in L if and only if

p(X) 13 a sum of 2™ squares in K(X).

Proof. First let p(X) = f}(X) + ... + f%.(X), where by Cassels’ lemma,
we may suppose thatf;(X) € K[(X]. Put X = a toget 0 = f3(a) +...+
f3:(«@). Since fi(a) € L, we see that s(L) < 2" — 1 and being a power of
2, s(L) € 2"7! as required. To prove the converse proceed as follows. Let
l=degp(X)=[L: K] > 2 By hypothesis
—1=h3(X)+ ...+ h2._.(X)
where again by Cassels’ lemma, A;(X) € K[X], and deg h;(X) < 1-1.
Then a is root of 1+ h2(X) + ...+ hZ,_,(X) and so
14+ RH(X) + ... 4 hoaca(X) = p(X) - ¢(X) (3.14)
for some polynomial ¢(X) € K[X]. We have then
deg(p(X)) + deg(g(X)) < 2max(deg h;(X)),
ie.
deg(g( X)) <2l-1)-I=1-2.
We prove our result by induction on the degree I of p(X). First for | =
2,q(X) is a constant, say go. Then by (3.14)
L+AI(X) + .+ Baca(X) = go(X' + ..,

say. Now equating the coefficients of the highest power of X gives go to be
a sum of at most 2"~! squares in K, i.e. go € Gan-1(K) C G22(K(X)). So
again by (3.14) p(X) € G- (K (X)) as required, since 2”71 + 1 < 2",

Now let 8 be a root of ¢(X) and let ¢*(X) = irr (8, K) € K[X], so that
¢*(X)lg(X) and

deg ¢* < deg g <l-2<l.
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Also 1+ B3(B) + ... + h2._.(B) = p(B)g(B) = 0 i.e. —1 is a sum of 2"~}
squares in K(3) and so K(J) is totally complex and thus by the induction
hypothesis ¢*(X) is a sum of 2" squares in K(X). This holds for all irre-
ducible factors of ¢(X) and so by the group property of G~ (K (X)), ¢(X)
itself is a sum of 2" squares in K(X). By (3.14), p(X) is also. This com-
pletes the proof. O

Another promised elementary result is the

Theorem 3.7 (Springer). Let [K : F] = n be an eztension of number
fields, where n i3 odd. Then

s(F) = s(K).

Proof. It is enough to prove that if
XI+...+X2=0 (3.15)

is not solvable in F, then it is not solvable in K (i.e. that s(F) < s(K)
for, the reverse inequality is trivial). We use induction on n. For n =1
the result is obvious. So let n > 3. Let p(t) = irr (o, F) where K = F(a).
Suppose to the contrary that (3.15) is solvable in K. Let X; = g;(t) € F[t]
be a solution of (3.15) where deg ¢g; < n — 1, (don’t forget elements of K
are polynomials f(a) € Fla]).

Then 0 = gZ(a)+ ... + g2(a) i.e g}(t) + ... + g%(t) has t = « as a oot
and so p(t) divides this polynomial, say

gi(t)+ ... +g5(t) = p(t) - h(t). (3.16)

If an irreducible polynomial f(t) divides all g;(¢) say g; = fg;, then f2(g;2 +
et giz) = ph where degf < n —1 < n. Hence by the uniqueness of
factorization h = f2-h’' (since f Jp). Cancelling f2 we get ¢ .. .+g" =ph'.
Thus, without loss of generality, (¢1,...,9s) = 1 i.e. there exist polynomials
hi,...,hs such that

gl(t) “hi(t) 4 ...+ gs(t) - hy(t) = 1.
It follows that the g; cannot have a common root « in the algebraic closure
C of K, for putting t = a, this would then give 0 = 1. Further h(¢) £ 0,
otherwise g(t) +. .. + g2(t) = 0 which is false because equating the highest
coefficient of ¢ to 0 would give a? + ...+ a?> =0 (r < s), a; € F, which
certainly is false by hypothesis. Now
degh = 2maxdeg g; —degp (which is odd in the first place)
<2(n-1)-n=n-2.
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Let 8 be a root of A(t) in C. Put ¢t = §in (3.16) to get

gi(B)+... +g2(8)=0
i.e. X7 +...+ X? represents 0 in F(B). But [F(B): F]|deg h(t) (which is
odd) so [F(8) : F] is odd and at most degh < n — 2. This contradicts our
induction hypothesis. O

When the degree [L : K] is even, s(L) and s(K) need not be equal (both
supposed finite). However, we have the following.

Theorem 3.8. Let K be formally real and let d € K* be such that d €
Gn(K) but d € Gu1(K). Suppose 2% is the largest power of 2 < n (i.e.
2F < n < 2K Then s(K(v—d)) = 2*.

Proof. Let s = s(K(/=d)), say -1 = i:ag (o; € K(v/=d)). Write
a; =b; ++v/=d-¢; (bj,cj € K) so that ~
1= i:(b,- + ¢;v/=d)2.
Then ~
z’:b_,-cj =0, —1=z’:b§—dic§.
i=1 i=1 j=1

Here 3-c? # 0, otherwise —1 = ) b (b; € K), contradicting the formal
reality of K.
It follows, from Theorem 2.3 (don’t forget s is a Stufe, so a power of 2)

that
d(y &y —(Z 2)+(Zc2> PN
—Zc +Eb c,+w2+ (3.17)

j=1
= a sum of 2s — 1 squares in K,
since Ebij- =0.

Now in K(v/=d), we have (v/=d)? +d = 0 i.e. (v=d)? plus a sum of n
squares equals 0 (since d € Gn(K)) so s(K(v/—d)) < n. But 2 < n and s
is a power of 2 so s|2%. Were s < 2¥ (i.e. s < 2F~!) then d would be a sum
of 25 — 1 squares in K (by (3.17)), in other words,

d = a sum of 2% — 1 squares in K
= asum of n — 1 squares in K.

Thus d € Gp-1(K), contradicting our hypothesis. Hence s = 2*. a
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This result immediately leads to the following (cf. the proof of the second
part of Theorem 2.2 just after Corollary 4 of Chapter. 2).

Corollary. Let K be a formally real field and L = K(X,,...,X,). Let
d=X2+...4+ X2 € L*. Suppose 2k < n < 2¥+1 4nd let E = L(+/=d).
Then s(E) = 2*. (|

Exercises

Definition. Let K be a field. If there exists a positive integer p = p(K)
such that any sum of squares in K is already a sum of p squares in K, then
the least such p is called the pythagoras number (or the reduced height) of
K. Prove

(i) p(Q)=4 (Lagrange’s theorem) (see [L5] pp. 142-145)
(i) p(R)=1
(i) p(K) < s(K) + 1. (cf. (3ii) on p. 15).
2.
(I) Let o be a zero of the irreducible quartic
X*+CX*+DX+E (C,D,E€1) (*)
Prove that if K = Q(a) is totally complex, then
(i1) A, the discriminant of (%), is > 0
(ii) Either C > 0 or E > C? /4 (see Burnside and Panton) The Theory of
Equations Vol. I).
(IT) Let a, B, v, 6 be the zeros of (x) (all complex), show that A = A?(y—§)?
for some X € Q(a, B).
(III) Show that we can select a second zero § of (*) for which the field
Q(a, B) is either equal to K (= Q(a)) or is of degree 12 over Q.
(IV) Prove that Stufe of L < 4.
(V) Deduce that Stufe of K < 4 (use Springer’s theorem).

For a proof of this see [P7].

3. (i) Express —1 as a sum of two squares in Q(e?**/%),
(i) Express z! + z3 + 22 + £ + 1 as a sum of four squares in Q[z]. (We
know by Theorem 3.6 that (i) and (ii) are equivalent.)

4. Do likewise with ¢ = ¢?*/7 and the polynomial irr (¢, Q) =z%+2° +
E RN AR o LS
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5. Let ¢ = ¢2™/P (p an odd prime). Then we know by Theorem 3.6 that
Stufe (Q(¢)) = 2, respectively 4 iff irr((,Q) = fF(X)=XP'+...+ X +1
is a sum of four, respectively eight, squares in Q[X]. In these two cases
actually write f(X) as a sum of four or eight squares in Q[X].

6. Show that if s(K) = s and X is transcendental over K, then s(K (X)) = s
(see Theorem 11.8).



4

Hilbert’s 17th problem and the function
fields R(X), Q(X) and R(X,Y)

In 1900, David Hilbert [H4]' in his famous address at the International Con-
ress of Mathematicians in Paris proposed as his 17th problem the following:

Hilbert’s conjecture. Let f(X,,...,X,) € R(X,,...,X,). A necessary
and sufficient condition that f is a sum of squares in R(X,,...,X,) is that
f is positive definite (i.e. f(ay,...,an) >0 for allay,...,a, € R for which
f is defined).

A similar conjecture holds for Q(X,,..., X,). These conjectures were
proved by Artin [A6] in 1927 for both R and Q, but one still didn’t know
how many squares are needed for the representation. Some results were of

course known when the number of variables n = 1 or 2. Let us first look at

the field R.
In R(X) two squares suffice:

Theorem 4.1. Let f(X) € R(X) be positive definite; then f(X) is a sum
of two squares.

This had already been proved by Hilbert in 1893, as also was the next
result.

Theorem 4.2 (Hilbert (1893)). Let f(X,Y) € R(X,Y) be positive def-
inite; then f(X,Y) is a sum of four squares.

This was first proved by Hilbert [H4] and later again by Witt. We shall
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give a proof due to Pfister [P5]. This proof has the advantage that it can
be generalized to the case of n variables.

In 1966, James Ax (unpublished) proved that in R(X,Y, Z) eight squares
suffice. This has now been proved by Pfister in a very elegant way (see
Chapter 5). We state here the general theorem of Pfister for information.

Pfister’s General Theorem (1967). Let
f(X1,...,Xa) € R(Xy,..., X0)

be positive definite. Then f is a sum of 2" squares.

In terms of our earlier definition (Chapter 3, Exercises) of the pythagoras
number P(K) of a field K, this simply says that P(R(X,,...,X,) < 2"

We shall prove Theorem 4.2 first, which is merely a special case of Pfister’s
general theorem, since it brings out the mode of proof very neatly. The gen-
era] case has a few further difficulties, which can, however, be surmounted
fairly easily.

The next question is: Is 2" best possible? In other words what is the
true value of P(R(X),...,X,))? In general, this would be very difficult to
answer, even conjecture.

For n = 1 i.e. in R(X),2 is best possible that is there exist positive
definite functions which are not squares in R(X), e.g. X2 +d (d > 0).

For n = 2, 4 is indeed best possible, that is, P(R(X,Y)) = 4. The
function 1 + X?Y?(X? — 3) + X?Y* which we shall extensively use later,
cannot be expressed as a sum of three squares in R(X,Y"). This was proved
by Cassels, Ellison and Pfister in 1971 [C3] in a most ad hoc way using
elliptic curves. Thus the method is special for n = 2. This result was
extended by Christie [C18].

We have remarked above that P, (say) = P(R(X;,...,X,)) < 2". The
function 1+ X? +... X? and Corollary 4 of Chapter 2 shows that n+1 < P,.
We have P, = 2,P, = 4. Even P; is not known exactly, we only know
4 < P<8.

Let us look at some of the corresponding results for the function field
QX1,-.., Xn)-

For n =1, Landau [L4] showed that eight squares suffice:

Theorem 4.3. Let f(X) € Q(X) be a positive definite function. Then f
18 @ sum of eight squares in Q(X).

A proof of this will be given in the course of the proof of Theorem 4.2 of
Pfister.

Is eight best possible? As for the case R, if we let T, be the smallest
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natural number such that every sum of squares in Q(X,,..., Xy) is already
a sum of T, squares, then Theorem 4.3 says that ; < 8. The function X2?+7
shows (see Corollary 3, Chapter 2) that 5 < 7. Pourchet [P6] has shown
that 7, = 5. We shall give a proof of Pourchet’s theorem in a later chapter.
Little is known regarding generalizations of these results. The latest big
new result is that of Kazuya Kato and J.L. Colliot-Théléne [K1], where
they prove that 7, < 8. The proof is amazingly difficult and uses a sort of
“higher level” class field theory, developed by Kato, K-theory and algebraic
geometry. The appendix by Colliot-Théléne is quite readable. (Note that 7,
is simply P(Q(X1,...,X4)) in our earlier notation of pythagorian number.)
We now give a

Proof of Theorem 4.1. Without loss of generality, we may suppose that
f(X) € R[X]; for otherwise if f(X) = w(X)/v(X)(u,v € R[X]) = u(X)
v(X)/v}(X) and we merely look at u(X).v(X). Further we may clearly
suppose that f(X) is square-free.

Now factorize f(X) in C[X]:

f(X)=a(X—a1)(X—El)... (41)
Here there are no real roots for if f(X) = (X — p)- g(X) then for X > p we
must have g(X) > 0 since f is PSD while for X < p we have g(X) < 0 again
since f is PSD. It follows that g(p) = 0 contradicting the fact that f(X)
was square-free. Morever, by letting X — oo we see that a > 0 (because
f(X) is positive definite). It follows that a = b (b € R).

Now consider the polynomial 5(X — a1 (X — a2)... . This has complex
coefficients and so may be written as u(X) + iv(X) say, where u,v € R[X].
Then b(X — @ (X — @) ... = u(X) — iv(X). Multiplying, we get f(X) =
u}(X) + v¥(X) as required. m|

Our aim now is to give Pfister’s proof of Theorem 4.2.

An elementary lemma. Let f(X) € K[X] be square-free. Then
K(X)/(f(X)) is a direct sum of fields:

K&)®K(&)®...0 K(E)

where £1,62,...,& are roots of the distinct irreducible factors of f(X) in
K[X] (one each).

Proof. Let I = (f(X)) and factorize I into prime ideals. Since K[X] is a
Euclidian domain these are maximal ideals, without common factors:

I=MM,.. .M, (M,M)=1.
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Let K(X)= R. We claim that
R/IZR/M,®R/M:®...® R/M,.

To see this, consider the map § : R — R/M, & ...® R/M, given by a —
(a+ My,...,a+ M,). It is easily checked that 9 is a ring homomorphism.
To see that it is onto, we take a general element of the right side: (a; +
My,a; + Ms,...,as+ M,). Then by the Chinese remainder theorem, there
exists an a € R such that ¢ = a; (modulo M;). It follows that

(a1 + My,...,as + M) =(a+ M,...,a + M,)
and now a is the preimage of this general element under 8 i.e. 6 is onto.
What is ker 67 It is the set of those a € R for which a + M; = M;
for all 7 i.e. a € M; for all i. Thus ker 8§ = M, N...N M,. But these

M; are comaximal (i.e. maximal and coprime) so this intersection equals
M;...M, = I. The result follows. O

Lemma 1. Let K be a field with charK # 2 and suppose that the Stufe of
every finite extension of K, which i3 not formally real, is at most 2™. Then
any element f(X) € K(X), which is a sum of squares in K(X), is a sum
of at most 2™*! squares in K(X), i.e. P(K(X)) < 2™+

Proof. Without loss of generality f(X) € K[X] for if
F(X) = w(X)/v(X) = u(X)o(X)/v*(X),
we merely look at u(X)- v(X).

We use induction on the degree of f(X). To start the induction, let
deg f = 0 so that f(X) is a constant, say c, given to be a sum of squares
in K(X) and we have to show that it is a sum of at most 2™+! squares in
K(X).

First, since K is a finite extension of itself, it is not formally real, and its
Stufe is at most 2™ (by hypothesis), so each element of K, in particular c,
is a sum of at most 2™ + 1 < 2™*1 squares as required [cf.(iii) on p. 15].

So let K be formally real. We are given that c is a sum of squares in
K(X), so by Cassels’ lemma, in K[X], say

e=fI(X)+...+ f1(X) (fi(X) € K[X]).
Here by equating the coeflicients of the highest powers of X to zero, we
contradict the formal reality of K, unless each f;(X) is a constant, say a;,

so that

c=a} +...,a2 (a; € K).

Now consider the field K(y/—c). This is not formally real; indeed 0 =
(V=¢c)’ +e=(V=c)* + al +...+ a?. Hence the Stufe of K(v/=c) < 2™;
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so we have, with a;,8; € K

0=(a;+vV=chHi)+... + (azms1 + V—cPam41)*.
Then Y o2 —c} B} = 0 and 3 «a;8; = 0. The first relation gives ¢ =
> a?/ 3" B} where 3 7 (nor indeed 3 a?) can be zero, since K is formally
real. Now Eaf, 2,312 € Gamyy) C Gymsr. This latter is a group, so ¢ €
G2m+l .

This starts the induction. Now suppose the result is true for polynomials
of degree less than N and let f(X) have degree N. If f(X) has a square
factor, say ¢%(X), then f(X)/¢*(X) € K[X] and is a sum of squares since
f(X) is and has degree less than N. Hence by the induction hypothesis, it
is a sum of at most 2™*! squares and then so is clearly f(X).

So suppose f(X) has no square factor. We first look at the special case
when f(X) is irreducible in K[X], this is only to get a feel of the general
case.

Since f(X) is irreducible, it is prime and so maximal.

Thus K[X]/(f(X)) is a field; call it K(£) where f(§) = 0. Thus K(¢) is
a finite extension of K and it is not formally real, for, in the relation

f(X)=h}(X)+...+h3(X),
(don’t forget f(X) is given to be a sum of squares) put X = £ : 0 =
hI(€)+...+h2(£). Here, not all the h;(£) are zero for otherwise f(X)|h;(X)
(all §) and then f2(X)| 3° h%(X) = f(X), which is false. Thus
0="hi(&)+ ...+ B2(6)
is a non-trivial representation of 0 as a sum of squares in K[£], so K(£) is

not formally real. Thus by hypothesis, the Stufe of K(£) is at most 2™, i.e.
there exists a solution of

a}(E)+...+asm y(6)=0
where a;(£) € K(£) are polynomials in ¢ of degree less than degf. Thus
a?(X)+ ...+ a2m,,(X) is a polynomial in K[X] which vanishes at X = ¢
and so is divisible by irr(§, K) = f(X):
GE(X)+ ..., akn y (X) = F(X)g(X). (42)
Then deg f+ deg g < 2 max (deg a;(X)) < 2 deg f so deg g < deg f. Now

f(X) is by hypothesis, a ;um of squares (and we have to show that it is a
sum of at most 2™+! squares) and so a sum of 27 squares for sufficiently
large T(> m). Since G,r is a group, by Corollary 2, Chapter 2, it follows
by (4.2) that g(X) is also a sum of squares (g(X) € G,r). Now deg g < deg
f so by the induction hypothesis g(X) is a sum of at most 2™*! squares
i.e. g(z) € Gam+1. So again by (4.2), f(X) € Gym41, since 2™ + 1 < 2m+1,
This completes the proof of the case when f(X) is irreducible.
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So now suppose f(X) is general, but square-free. Then K[X]/(f(X)) is
a direct sum of fields:

Ké&)o...e K(é)

where £1,...,§, are roots, one each, of the irreducible factors of f(X) in
K[X]. Our aim now is to get a relation like (4.2). Then as before we should
be through. Let f(X) = fi(X)... fo(X). Then
K[X])/(f(X)) 2 K[X])/(H(X)) &... & K[X]/(fs(X)).
Here again, none of the K(&;) are formally real, for in the relation f(X) =
R3(X)+...+ R2(X), put X = £ say. Since £ is a root of fi(X), f(£) =0,
hence
0=hi(&)+... + R2(&1).

As before if all k;(£1) = 0 then fZ|f(X) which is false since f(X) was
supposed square-free. So K(§;) is not formally real and similarly none of

the K(&;) are formally real.
We have, in each of the fields K(¢;) = K[X]/(fi(X)),

2™ 41
0= )Y k(&) (i=12,...,5)
j=1

since the Stufe of K(¢;) is at most 2™ by hypothesis, where the A;;(X) are
polynomials (clear the denominators if any). Then we have the congruences
2™ 41

Y A(X) =0mod fi(X) i =1,2,...,8).

j=1
By the Chinese remainder theorem, find ¢;(X) such that
gi(X) = hij(X)mod fi(X), 1=1,2,...,2™ + 1.

Written out in full to see clearly:

B (X) + B4 (X) + ... 4 A2 ymya(X) = 0 mod fi(X)
B21(X) + B3 (X) +... + B3 ym 41 (X) = 0 mod fo(X)

91(X) =h11(X) mod f1(X)
hzl(X) mod fg(X)
gz(X) Ehlz(X) mod fl(X)
he2(X) mod fo(X)
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then
(X)) + .+ gy (X) = h1(X) + B3, (X) + ... mod f,(X)
= h2,(X) + B3(X) + ... mod f(X)

and so g +...+ g2m (X)) = 0 mod f(X), since fy, f2... are all coprime.
This gives a relation like (4.2) and so completes the proof of Lemma. 1. 0

As an immediate consequence of this lemma we can prove Theorem 4.3
of Landau as follows:

Proof of Theorem 4.3. Let K = Q. Then by Theorem 18.3 the Stufe of
every finite extension of Q, which is not formally real is at most 4 = 22, so
by Lemma 1, p(Q(X)) < 22+1 =8, (]

Lemma 2. Let L be a finite extension of R(X), which is not formally
real. Then any quadratic form in L(i) (12 = —1) in at least three variables
represents 0 non-trivially.

L(i)
L

R(X)(@) = C(X)
R(X)

Proof. L(3) is a finite extension of C(X) and so L(i) = C(X,£), where {
satisfies the monic polynomial £ + @, (X))~ +... + a,(X) = 0, so that
a;(X) € C[X] (rather than C(X)). Let the quadratic form be

(without loss of generality, diagonal, but in any case we shall be applying
the lemma to a diagonal form). Then A,, A2, A3 € L(i) = C(X,§). Clearing
denominators in (4.3), we may suppose that the A; € C[X, (] and let us look
for a solution in C[X, {]; so let

(fori=1,2,3) Xi =¥ + e + ¥ + .. 4 ¥

where Yj(i) € C[X] and where deg I/j(i)(in X) is at most N say, to be deter-
mined later. Each YJ-('), being a polynomial in X of degree at most N, has

N +1 coeflicients, so all together there are (N + 1) - v - 3 coefficients since
j takes v values, and i takes three values, 1,2, 3. Now substitute for the X;
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in (4.3):

2 2 2
7-1 7-1 -1
0= 4 {Z Y,-(”E’} + Az {Z Y}”e} + A3 {Z Y}”E} (4.4)
j=0 3=0 j=0
Now the defining polynomial for ¢ implies that ¢* (k > 7) is a polynomial
in £ of degree 4 — 1 with coefficients in C[X], say
e = al® (X)) 4.+ e (X).
Substituting this in (4.4), we get E;’;; T;(X)¢? = 0. Now let ¢; = max
deg agk)(X),CQ = max deg A;(X). Then
deg T;(X) <2N +¢; +c2=2N + C,

say. Now (4.4) will become zero if we can make each T;(X) individually zero.
Since deg T;(X) < 2N +C, so each T} involves at most 2N+ C+1 coefficients
to be made zero i.e. there are at most (2N +C+1)y equations to be satisfied.
The number of unknowns are 3y(N + 1), (these are actually homogeneous
quadratic equations). Since C is algebraically closed and 3y(N + 1) >
(2N + C + 1)y which is at least the number of equations, so there is a non-
trivial solution. d

Lemma 3. Suppose a,b,c € L with L as above. Then X% +aY? = b% +¢?
1s solvable in L i.e. the form X? + aY? represents b + 2 in L.

Proof. Ifi € L then by Lemma 2 the forms X? +aY? — (b%ic)Z? represent
0 non-trivially. If, in this representation, Z = 0 then X? + aY? represents
0 nontrivially in L and so represents all elements (see Theorem 11.4) of L,
in particular b £ 1c. If Z # 0 then dividing throughout by Z we see that
X?+aY? represents btic again. So btic is always represented by X?4aY?,
say,

X2 +aYr=b+ic

X2+ aY? =b—ic
Multiplying, we get (X1Xs + a¥1Y2)? + a(X Y2 — Xo17)2 = 6% + 2. O

}aXlaY'laX%YE €L=L(Z)

If i ¢ L, we see as above that there exist £, € L(7) such that:
E+an: =b+ic
and so also
_5-2 + a7t =b—ic.
Multiplying, we get (€& — anf)® + a(ET7 + €n)? = b2 + ¢*. Here €€ — anff and
€7 + &n are both elements of L since they are invariant under “bar”. Thus
X2 4+ aY? = b% + 2 has been solved in L.
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Lemma 4. Ifei,ez,e3,eq4 € L then €3 4 €3 + €2 + €2 is a sum of three
squares in L.

Proof. Puta=e3+eZ b=e, c=e;in Lemma 3. Then there exists a
solution u,v say of u? + vZ(e} + e?) = e + €2. Then
eitestestel=utvi(ed+el)tel+e]
W (o7 + 1)+ D)
=u? + (ves + eq)? + (veq — €3)°
which is a sum of three squares. It now follows that the Stufe of L is at
most 2 for if s is the Stufe so that —~1 = e? + ... + €2, then by Lemma 4,

we can successively reduce the right side to a sum of three squares. Hence
s £ 3; but s is a power of 2 (see Theorem 2.2) so s < 2. a

And now finally we come to the

Proof of Theorem 4.2. Let K = R(X). By the above, the Stufe of every
finite extension of R(X'), which is not formally real is at most 2. Hence by
Lemma 1, any element of R(X,Y’), which is a sum of squares, is a sum of
at most 2!+! = 4 squares. a

The fields considered above have either been R or Q. For a general field
K we could formulate Hilbert’s 17th problem on similar lines. We give a
quick survey of what is known for this general set up, together with all the
historical developments and complete sets of references. One should note
that what is true for the real numbers R is almost always valid for real
closed fields R. For a detailed account of this and some other references,
the reader is referred to [P3], [P4].

Let K be any field and let

9(X1,...,Xn)

f e Xn) = 53, X
be a rational function in n variables with coefficients in K. We call f
positive definite if for all a,,...,a, € K for which h(ay,...,a,) # 0, we
have f(ai,...,an) > 0 for all orderings > of K. If K has no ordering, then
every f is positive definite. Hilbert’s 17th problem can now be formulated
in three parts:
Pl Let K = R be a real closed field. Does

f(X1,...,Xa) € R(Xy,...,X0),

f positive definite, imply f 18 a sum of r squares in R(X,,..., X,) for
some natural number r¢ The converse to this is of course trivial.

€ K(X1,...,Xn)
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P2 Let K be an arbitrary field. Does
f(Xh,..., X)) € K(Xy,...,Xa),

f positive definite, imply f is ¢ sum of r squares in K(X1,...,X,)
for some natural number r ¢

P3 If P1 respectively P2 is true, 18 there an upper bound on r depending
only on n (the number of variables X,,...,X,) aend on K but not on
f?

The answers are the following:

P1 is true (Artin [A.6] - 1927).

P2 is in general, false (counterexample due to Dubois [D3], (1967)).

P3 is true for K = R, a real closed field (Pfister, [P2], 1967) but unsolved

for other fields K where P2 holds.

The investigation of positive definite functions began with Hilbert in
the year 1888, when he first proved, [H3], the negative result that if
f(X1,...,Xa) € R[Xy1,...,X,] is a positive definite polynomial, then f
need not be a sum of squares of polynomials in R[X),..., X,], except for
n = 1. Hilbert’s proof was geometric and did not explicitly yield any such
polynomials. The first explicit example was given by Motzkin [M2] 1966
viz. the polynomial.

f(X,Y)=14+X*Y?+ X?Y* - 3X?%Y?

which we have already met previously in this very connection. Later R.M.
Robinson [R8] produced other examples.

In 1893, Hilbert [H4] succeded in proving the case n = 2 of P1; indeed
one can deduce from his proof the stronger result that four squares suffice
for n = 2. This deduction was carried out by Landau [L4] in 1906, who
at the same time looked at the case K = Q, n = 1 of P2. Landau’s result
for K = Q, n = 1 we have already looked at earlier. The subsequent
improvement due to Pourchet [P6] will be taken up later in Chapter 17.

In 1927, Artin [A6] proved P1 in general and P2 under the condition that
K has only Archimedean orderings (for instance if K is an algebraic number
field). In contrast to Hilbert’s proof of P1 for the case n = 2, which was
essentially constructive, Artin’s proof relies heavily on Artin-Schrier theory
of formally real fields and also on Sturm’s theorem.

The first constructive proof of P1 for K = R was given by Habicht [H1],
in 1940, under the extra condition that f is strictly poisitive, say f > 1. In
1955, A. Robinson [R7] proved P1 by using lower predicate calculus and the
model completion of R. In 1956 Kreisel [K4] gave a constructive proof for
arbitrary f > 0 and showed that there is an upper bound on the number
r of squares, depending only on n and the degree of f (but not on the
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coefficients of f). Finally, in 1972, Knebusch [K2] gave a proof of Artin’s
theorem P1 that avoids Sturm’s theorem.

We have already said that P2 is in general, false. An example was given by
Dubois {D3], in 1967, in which he constructs a field K with only one ordering
(which is, of course, non-Archimedean) and a positive definite polynomial
f(X) € K[X], which is not a sum of squares in K(X). Thereby it was
shown that some condition of the field K, such as

K is real closed or

All orderings of K are Archimedean etc.

is necessary if P2 is to be true. We give here an

Elementary exposition of Dubois’ example.

Let Q be the rational field and t an indeterminate over Q. We order Q(t)
as follows:

Let h(t) = f(t)/g(t) € Q(t). Write h(t) as h(t) = r-t*- f1(t)/9:1(t), where
f1,91 have constant term equal to 1 and s € Z.

Now say h(t) > 0 iff r > 0. It is easy to check that this defines an order
in Q(t). In this order, t satisfies the following properties (and then we say
t is infinitesimal):

(1) t>o.
(2) foranyre @, r>0, we have r > t.

Indeed the properties (1), (2) imply that the rational function h(t) =
F(®)/g9(t) = r-t*- f1(t)/9:1(2), written as above is greater than 0 iff r > 0 for

h(t) =r " f1() - 01(t)/ 91 (1).
Here t* > 0, ¢%(t) > 0 (all squares positive). We claim that fi(t)- ¢,() =
1+ait+...+a;t’ > 0,s0 h(t) >0iff r > 0 as required.
To prove the claim, we have indeed
ap+art+...4+a;t’ >0iff ap > 0.
The general term a;t! < %; this is clear if @; < 0, while if a; > 0 we have

t! < t (since t < 1) which is less than any positive rational and so less than
7o Thus ait 4. +ajt! < 3+...+3=1land l+at+...+aty >0. O

Now we show that the order > defined above on Q(t), is non-archimedean.
For this we must produce an element o > 0 in Q(t) for which no integer n
satisfies n > a. Take o = 1/t so that a > 0 certainly. Now n > } (> 0) for
some n = t > 1/n which contradicts (2) above as required.

Now let K be areal closure of Q(t) and let F' be a field over Q(t) consisting
of elements of K obtained from Q(t) by means of a finite sequence of rational
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operations and extraction of square roots of elements of Q(t), exactly as in
ruler and compass constructions. Thus,

every positive element of F' has a square root in F. (*)

This already implies that F" has a unique order for (*) is equivalent to saying
that for any element o of F

Either o

or —a = asquarein F

a square in F

(for one of +a > 0).

Let P = {a € Flais asquare }. Then P+ P C P for if o, € P, say
a=z? f=y? then a + 8 = z? + y? and if this not in P, then it in —P,
say = —z? so 22 + y? + 2% = 0; so F is not formally real, which is false,
since F C K (real and closed).

Also P- P C P clearly. So P is an order in F. If now P* is any order of
F, then P* O P (since all orders contain squares), but P is an order, so no
strictly bigger P* can be an order, hence P* = P.

Thus F has a unique order which is non-archimedean.

Now let f(X) = (X®—t)?—¢* € F[X]. This f(X) is not a sum of squares
in F(X), indeed not even in K(X), for f(t'/*) = —t* < 0.

We claim that f(X) is a positive definite function on F i.e. that F(a) > 0
forall a € F.

The easiest way to show this is to work in a larger field, which naturally
includes F. Define F,, = R((¢,)) to be the field of formal power series in t,
over R. Thus the elements of R((t)) are of the form

anty tanpt"t 4.+ ... (nel).
(Note that N can be negative. Thus these are the Laurent expansions). We
embed F,_, in F,, by putting

2 =t,_1 (n=1,2,...) and put ¢, = £.
Thus R((t)) = R(ta)) C R((t1)) C R((t2)) C ... where to = £2,t, = 1}, =
t2,.... In fact ¢; is algebraic /R((to)) (it satisfies to = ¢?) and indeed

R((%0))(t1) = R((t1))
and so on at each stage; for an element of the left side is of the form
A(to) + t1B(to)

and writing ¢y = 2, this is an element of the right side. Conversely for any
element of the right side, we separate out terms with even powers of ¢, and
odd powers of t; and write it as E(t;) + O(t,) = E(t1) + ¢; (even powers of

t1). Now put £5 = t3 throughout; so this equals A(ty) + ¢, B(%5), an element
of the left side as required.
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Next let

F=DFn.

n=0
Now all the F, have a unique order inherited from R by the convention that
t, is positive but infinitesimal. Indeed any element of R((t,)) looks like

anty +an it 4 Fag + arte 4 ant? 4+ ...

=antN (14 bt + 682 +...)>0iff ay > 0.
This gives the unique order. Hence F has a unique order.

We now show that F is closed under the taking of square roots of positive
elements. So let A€ F, A> 0. Then A € some F,; say A = rt,(1+at, +
ast? + ...), where since A > 0 we have r > 0. Here if s is even, /{2 € F,
itself while if s is odd, then

VB =V, 102 =g D2 e B F, CF.
Also, since r > 0, 4/r € R. It remains to show that 1 + ait, + axt + ...
has a square root in F. Write ¢ for t,,. We shall show that it has a square
root in F,, i.e. we wish to solve
(L4+bit+bt>+..) 2 =1+ ait+ast’ +... (bjER).

We equate coefficients of 7:

FOI‘j = 1,261 = a) SO bl = a/2 € R.

For j = 2,5 + 2b; = ay; since b,is known, so is b, and it is real.

Now suppose b;,b,,...b, have been found. Now equate coefficients of
t"+1 to get

bny1+ b1bn +baby_1 4+ ...+ byby + by = anga.

Since by,b2,...,b, are all known, so b,4; can be determined (since the
characteristic does not equal 2). |

Now identify naturally F' as a subfield of F. This is possible since F
is constructed from Q(t) = Q(%0) by extraction of square roots of positive
elements and so is clearly contained in F.

Finally identify t, with the 2"th roots of ¢ viz. t; = Vt; = V1,t; =
\/Zl = \‘/Z, ty = It etc. .«.ytn = 2"th roots of t as required. With this
identification, every non-zero element z of F is of the form (note that z € F,
for some n)

T = rt,I:'!(l +at, + agti +...)
= rtMﬁ"(l + a1t? 4 a,t¥? 4 )
= rt™ + higher powers of ¢ b’s,
meaning t#, where p > m (p,m € Q), and m has degree 2". Here r # 0.
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Now in the relevant order 7™ dominates the rest of the terms, so we may
write
z =7t™ + smaller terms, r # 0, m € Q,
and m has denominator 2°.
We shall indeed show that the polynomial
_ fX)y=(X* =t - #*
is positive definite in F and so clearly in F.
Take any z € F of the above form and put X = z. Then the left side
becomes
(rt™ + smaller terms ) — 1% —¢3

= (r*t*™ 4 smaller terms — t)* — ¢°.

Case 1. 3m < 1. Then t*™ dominates the bracket so it equals r?¢5™4
smaller terms greater than ¢* since 6m < 3 (indeed 6m < 2).

Case 2. 3m > 1. Then —t dominates the bracket so it equals ¢? plus
smaller terms greater than ¢3 again.

Finally note that 3m # 1, otherwise m = %, which is false, as m has
denominator a power of 2. This completes the proof. a

Going back to the question in P3; the first important step (after Artin’s
proof of P1) was taken by Tsen [T2] in 1936 with his very general result
on quasi-algebraically closed fields. His paper was forgotten during the war
and his results had to be rediscovered by Lang [L6] before they reached the
mathematical community of the western world. P3 was finally solved for
real closed fields by Pfister [P2], the number of squares needed being 2.
We have already looked at the proof of this result for the field R of real

numbers. The same result is valid for any real closed field:
n+ 1< P(R(X,,...,X,))L2"
where P(K) is the pythagoras number of K = R(X,,...,Xy,).

For a general field K, P3 is still an open problem. Other open problems
in this topic are

Problem 1. What is the true value of P(R(X,,...,X,)), where R is real
closed?

Problem 2. Is P(Q(X},...,X,)) bounded by some function of n?

A good guess would be P(Q(X4,...,X,)) £2"+3. Thisistrueforn =0
(Lagrange’s theorem) and for n = 1 (Pourchet’s theorem). Pfister asked if
2"+2 would serve as an upper bound. Here again for n = 0,1 the bound
works.

Problem 3. IfK isa field with P(K) < 00, is it true that P(K(X)) < oof
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Positive definite functions
and sums of squares in R(X;,...,Xn).

One of the aims of this chapter in the following beautiful result of Pfister:

Theorem 5.1. Let R be a real closed field. Then any positive definite func-
tion in R(X,,...,X,,) i3 a sum of at most 2™ squares in R(Xq,...,Xn).
i.e. P(R(X,,...,Xm)) <2™

During the proof of this result we shall need to develop the beautiful new
idea of the generalization of the identities (1.1), (1.2), (1.3) and (2.1) to
similar more general diagonal forms

XZ+aX2 X? +aX?+bX?+ baX?, etc.

This generalization is ultimate in the sense that the relevant properties are
satisfied by no further generalizations. All this will not be required in the
proof of Theorem 5.1 but the topic is so beautiful that we shall pursue it
(as much as is possible in the spirit of this book) in Chapter 12.

Theorem 5.1 will follow from the following two results:

Theorem 5.2. Let K be a field with charK # 2 and the property that the
Stufe of every algebraic extension of K, which is not formally real, is at
most 2™. Then any sum of squares in K(X) is already ¢ sum of at most
2™+ squares in K(X); i.e. p(K(X)) <2m+1,

Remark. This result is the content of Lemma 1 of Chapter 4; it is trivial
if K is not formally real for then, K being an algebraic extension of itself,
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s(K) £ 2™; so for any polynomial f(X) € K[X], we have, as required,
2 2
f= (f—;l> - (f—;——1> = asum of 2™ + 1 squares
< a sum of 2™ squares.
So we may suppose K to be formally real.

Theorem 5.3. Let R be a real closed field and L a non-formally real
algebraic eztension of R(X,,...,Xy). Then s(L) <2™.

Deduction of Theorem 5.1 from Theorems 5.2 and 5.3. Take
K = R(Xl,...,Xm_l)
in Theorem 5.2. By Theorem 5.3 the Stufe of every non-formally real al-
gebraic extension L of K is < 2™~!. So by Theorem 5.2, p(K(X,)) < 2™
le.
p(R(X1,..., Xm-1,Xm)) <2™.
a

Although a proof of Theorem 5.2 was given in Chapter 4 we give here a
different one.

Second proof of Theorem 5.2. Let f(X) be such a sum of squares in K(X).
It is enough to take f(X) € K[X] for if f = g/h then fh? = gh € K[X] and
knowing the result in K[X] gives fh? to be a sum of 2" squares in K(X),
hence so is f as required.

The result is trivial if f = 0. So let f = ap + a1 X + ... + a; X! (aj €
K, a; # 0). We first show that [ is even and that a¢; is a sum of squares in
K. By hypothesis there exist ¢;(X), h{(X) € K[X] such that

fil=¢+...+¢? (5.1)
Let
h(X)=co+aX+...+cnX™ (cm #0)
gi(X)=bio +baX +... + b, X" (at least one b;, # 0),
and let r = max (deg g;). On comparing degrees in (5.1) we see that

| +2m = 2r. Thus [ is even. (Note that if | + 2m < 2r then equating
the coefficient of X?" on both sides of (5.1) gives £b%. = 0 (b; € K), a
contradiction since K is formally real). (5.1) gives aic, = Y, b2, so a; is
a sum of squares in K as required.

Write I = 2k. If k = 0 then f(X) = a¢ which is a sum of squares in K. We
show that it is a sum of at most 2" squares in K: indeed X2 +ay is irreducible
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over K for if it factors as (X + +/—ao)}(X — v/—ao) then /—ay € K; say
V=89 = a € K i.e. —a® = ag, a sum of squares in K, so —1 is a sum of
squares in K which is false as K is formally real.
Let a be a root of X? + ap and let L = K(a), so that in L, a® + a9 = 0.
But ap is a sum of squares, so
—a? = a sum of squares in L
i.e. —1= asum of squares in L
Thus by hypothesis

—1 = asum of 2"7! squares in L
2"—1
= Z(b.- +aci)? (bi,ci € K).
n-1 = n—~1 n=1
Then 1+ 3o , b2 222 = ao Y7, ¢¢. Here Tc? # 0 for
otherwise —1 = Eb,2 in K, which is false. Then f = ap = l—;—’#‘- € Gan as
required.

Now let £ > 0. Then f(X)=ao+a; X +...+ ayx X%*. Here, as shown
above, as 15 a sum of squares in K and so, as for gp, it is a sum of 2"
squares in K. We claim that without loss of generality f may be taken
monic; for f = azk - f/azx where f/asx is monic. Here f(X) and agi are
sums of squares in K(X) so f/az is a sum of squares. If we have proved the
result for monic polynomials, then f/a; is a sum of at most 2" squares in
K(X) and so is a2k and therefore so is f. Thus without loss of generality f
is monic and also clearly square-free (just divide out by the square factor).
Now making a common denominator we have

FX) = (g1(X) + ... + gi (X))/h*(X) (5.2)
Let o be a root of f(X) =0 and let p(X) = irr (, K). Then there exists
an index i such that g;(«) # 0, for otherwise p(X )|gi(X) for all i and so
PA(X)IF*(X) by (5.2).
Thus putting X = o in (5.2) we get

fla)-h*(a) = Zg. (a).
i=1
So L = K(a) is not formally real, hence by hypothesis s(L) < 2™~! and
so by Theorem 3.5, p(X) is a sum of 2" squares in K(X). This being so
for each irreducible factor p(X) of f(X), we see that f(X) is a sum of 27
squares in K(X). O

To prove Theorem 5.3, we need to generalize to 2" variables the quadratic
form X? + aY? (which we have already met in Chapter 4), which satisfies
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the following curious identity:

(X} 4+ aX2NYE + aYP) = (X111 + aXoY5)? + o( X, Y2 — XoY7)? (5.3)
Compare this with equation (1.1). The generalization of this form to four
variables is

®(X1,X2,X3,X4) = X2 +aX? +b(X? + aX?)
=X? +aX? +bX} +abX].
This satisfies an identity similar to (1.2), one which we shall be using ex-
tensively in the proof of Pourchet’s theorem (Chapter 17).
In general let n = 2™ and let
(X)) =&(Xy,...,Xn)
= (X} + a1 X3) + a2(X5 + a1 X)
+ay( X+ a1 X2+ ap( X2+ a1 X2)+....
+ am(Xgm_l_H + a1X22,,._,+2 +...taa;... am_ngm),
le.
@(Xl,. .. ,X2m) = @(Xl,. s ,Xgm—l)
+am<I>(X2m-1+1,...,X2m). (54)

This is the so-called m-fold Pfister form.
To prove Theorem 5.3, we need the following

Theorem 5.4. Let L be a non-formally real algebraic exztension of
R(X1,...,Xm) (R a real closed field). Then the Pfister form & represents
the element b2 + ¢ in L for any b,c € L*, (n = 2™ of course).
From Theorem 5.4, it is easy to deduce Theorem 5.3 as follows.
Consider the sum E = e} + ... + €,.,, (¢; € L) of 2™*! squares in L.
Put b=¢€,, c= ey,

2 2
a) = e3 + ej,

2 2 2 2
ay = e5 + eg + e7 + eg,

A =e§m+l +e§,,.+2 +...+e§m+l.
By Theorem 5.4, b + ¢? = ®(X,,..., Xym) is solvable in L say

B+ c? = &(ry, e, ..., mam) (rj € L).
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Then
E=0+c*+a+ar+...+am
=@(T1,...,T2m)+a1+...+am
=18+ a173 4 a2(1} + a17)) + a3(72 + @178 + a27F + araz7d)
+...+...+tar+a+...+am
=1t +ai(1+ 1)+ a1+ 77 + aytd)+
as(L+ 72 + a7 + a2 + araerd) + ...

=+ (+e)1+m)+(e5+es el +e)l+7 +armd)+....
Now this is the sum of one square plus two squares plus four squares and
so on up to 2™ squares, by the 2-, 4-, ... square identities. So the right side

equals the sum of 2™*! — 1 squares. Thus any sum of 2™*! squares (viz.

E) is a sum of 2™+ — 1 squares.
If now —1 = e +...e?2 and s > 2™*1| then this may be successively
reduced to a sum of 2™+! — 1 squares; so s(L) < 2™*! < 2™ (being a power

of 2). O

It remains to prove Theorem 5.4. For this we need to develop further
properties of the Pfister form ®.

The first result we prove is an identity similar to equation (2.1), which is
satisfied by this Pfister form ®. We have the following

Theorem 5.5. Let n =2™ and let ®(X,,...,Xom) be inductively defined
by

(X1, X)) = X? +aX?
and (5.4) above. Then ®(X)®(Y) = ®(Z) where the components Z; of
Z = (Z),...,Zam) are linear functions of the Y;, with coefficients in
K(X1,...,X2m), where chark # 2.

Proof. We use introduction on m. The result is true for n = 2 by (5.3)
above. So suppose the result is true for m and let us try to prove it for
m+11i.e.

@(Xl,. ey X2m+1)¢(Y1, ce ey Y2m+1) = @(Zl, ey Z2m+l).
Write Z = (Z),...,Zym+1) = AY for some suitable matrix 4 = (aj;) with
aji € K(X,,...,Xom). Write ® = X' Aym2m X = X'A4,, X, say, where the
matrix A,, of ® looks like the following:

1 0
Al—(O a1>’



5: Positive definite functions and sums of squares 65

1 0 O 0
a0 a0 0 _(A, 0)
2710 0 a O TN0 aA )T
0 0 0 aza)

etc. until

So ®(Xy,...,X2m) = X'AnX and we have to prove X'A,,XY'4,Y =
Z'AnZ (Z=TY),ie. Y'(X'AnXApn —T'ApT)Y = 0 (since X'A,, X is
a scalar) and as this is true for all Y, we have

X'AnXAp, =T AT,

or (X,,...,Xom)A, = T'A,T for a suitable T. So assume this for
m (remember n = 2™) for the two sets of variables X,,...,X2~ and
Xomi1,...,Xom+r. We thus have, by the induction hypothesis, two matri-
ces (the same matrix actually, just different variables as entries) T(1), T(®)
say, such that

&(Xy,..., Xgm)Ap =TV 4, TD
and
S(Xamy1ye vy Xgme1 )Ap = T® 4, T,
We are required to prove that
O(X1,..., Xom+1)Am41 = T' A1 T

for a suitable matrix T. We try

T ) am+lT(2)
“\T® M

where M is to be determined. We want

An 0
q»(xl,...,xgmﬂ)( ; )

Am+1 Am
_ T1) am+lT(2) An 0 1) am+1T(2)
—A\T® M 0 @my1dm )\ TP M

B C
-(5 &)
where B = T 4, TW 4 ¢ ) TP A, TP, € = amy (T A, T®
+T®' 4, M), D = a1 (TP 40T + M'A,,TP), and E = a2, T
AnT? 4 g M'A,M. Now, by the induction hypothesis, B =
@(Xl, ceey Xgm)Am + am+1¢(X2M+1, e 7Xgnv{-l )Am By choosing M =
—A;! @™ T A, T® it follows that C = D = 0. Finally we can check
that £ = A,41B, and we are done. This completes the proof of Theorem
5.5. O
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Now let B(X,Y) be the bilinear form associated with the quadratic form
e

&(X +Y) = (X) + &Y) + 2B(X,Y)

so that B(X,Y) = XA,Y'. Write e = (1,0,0,...,0) (2™ = n coordi-
nates). We have the following

Lemma 1. B(Z,e) = B(X,Y).

Proof. For m =1 we have: The left side equals

(3 2) (1) =0 ) -5

and the right side equals
1 0 Vg Y
(X1,X2) (0 a1> (Y;> = (X17X2)(al lYg) =Xih + a1 XoY2
and these are equal by (5.3).
Now use induction on m. We are required to prove that ZA,e' = XA, Y'
i.e. that

1 1
a) 0 0
(Zl,...,sz) as 0
ayaz :
0 0
1 0 n
Y,
=(X],...,X2m)( a ) .
0 . Yym
In other words
Y
(1) a1,
(Z1yee s Zam) | . | = (X1, Xom) az13
. a2a1Y4
0 .

ie. Z] = X1Y1 + (11X2Y2 +a2X3}/3 + (11(12X4Y4 +...+a1a2... amX2mY2m.
So suppose this is true - our induction hypothesis for m.
Then (Z1)m41 is the first coordinate of 7Y, where we have

TY = T am+1T(2) Yl
—\7T® M : :

Y’2m+l



5: Positive definite functions and sums of squares 67

Then, using the induction hypothesis,

n Yom a1
+ am+1 T(2)

(Z))mar =TW (

Yom Yom4
=X +aX:Yo+ ... taraz...amXomYom)
+amp1(Xom 1 Yom g1 + a1 Xom 1 2Yom o + ...
+a10z...amXom+1Yom41)
=XAmn1Y' =B(X,Y)
as required. O

Lemma 2. Letn =2™. Then

O(Y)B(Z/B(Y) +ie) = (X +iY).

Proof.  The left hand side is, using ®(A\X) = A\2®(X), B(AX,uY) =
AB(X,Y),
(YN B(Z/¥(Y)) + ®(ie) + 2B(Z/¥(Y), ie)

= &(Y) (<1>(Z)/(<1>(Y))2 1+ %B(z, e))

_ S(X)®(Y) ., 2 B(X,Y)
-0 (S5 -1+ )
= &(X) - &(Y) + 2 B(X,Y)
= (X +iY),
since $(Z) = ®(X) - &(Y) by Theorem 5.5. 0

We now require a generalization of Lemma 2 of Chapter 4, due to Tsen
and Lang. Indeed their result is much more general and we give here only
the relevant special case required for our purpose.

Theorem 5.6 (Tsen-Lang). Let R be a real closed field and let L be
a finite extension of R(Z,...,Zm) which is not formally real. Then any
quadratic form over L(i) (i = —1) in at least 2™ + 1 variables represents
zero non-trivially in L(7).

Using this result (a proof follows soon) enables us to prove Theorem 5.4.

Proof of Theorem 5.4. If ® represents 0, it is universal (see Theorem 11.4)
and so represents b% + c2. If not, consider the form & — (b+1ic)Z? over L(3),
which has more than 2™ variables. This then represents 0 over L(i) by the
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Tsen-Lang theorem. Choose a representation with Z # 0 and so (dividing
by Z) with Z = 1. That is ® represents b+icin L(%), say, ®(X+iY) = b+ic
and so also ®(X —iY) = b — ic. Multiplying and using Lemma. 2, gives
®X(Y) ®(Z/B(Y) +ie)- B(Z/B(Y) — ie) = b? + ¢ (5.5)
We shall show that the left side here equals ®()) for some A € L. Let
Z/(®(Y) = (u1,u2,...,um) = (u1,v),say. ThenZ/®(Y)+ie = (uy +1,v)
and Z/®(Y) — ie = (uy — i,v); also for any vector X, ®(X) = XZ +
g(X2,...,Xam). Using this we now find that the left hand side of (5.5)
above equals
*(Y){(u1 + ) + 9(v)H(w —i)* + 9(v)}
= *(Y){(u] +1)* + (9(v))* + 2(ui — 1)g(v)}
= @*(Y){(u] + 1~ g(v))* +4uig(v)}
=&%(Y)  ®(ul +1 - g(v),2u1v).
Now using Theorem (5.5), we have ®(X)-®(Y) = &(Z), so the above equals
®(A) (XA € L) as required. This finally completes the proof of Theorem 5.1.
0

We now give the proof of the Tsen-Lang theorem; see [T2], [L6], [R5],
[G2]. Indeed we prove the following more general result.

Theorem 5.6' (Tsen-Lang). Let L be a finite (and so algebraic) ez-
tension of K = C(Z1,...,Zm) and let f;(X,,...,Xn) (1 €5 < r)ber
quadratic forms in the n variables X,,...,X,, over L. If n > r-2™ +1 then
the f;’s have a common non-triviel zero in L.

Remarks.
1. Actually much stronger results than Theorem 5.6' can be proved (see
[L6])-
2. Theorem 5.6 follows on taking r = 1 in Theorem 5.6'. Since we only
need Theorem 5.6 why do we not adapt the proof of Theorem 5.6’ for the
special case r = 1 and thus simplify matters? The answer will be clear in
the proof of Theorem 5.6.
3. We shall prove Theorem 5.6' for C = R(:); however, the proof works for
any real closed field R, (so that C = R(i) is algebraically closed).

We need the following

Lemma 3. Let fj(X),...,Xn) (1 £j <r) be defined over K. Ifn >
r-2™ + 1 then the f; have a non-trivial zero in K.

Proof. We use induction on m. For m = 0, the result reads: If n > r +1
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then the r quadratic forms f;(X1,...,X,) have a common non-trivial zero
in K. The proof of this is immediate since C is algebraically closed and
there are more X’s than there are f’s; so just solve.

Now suppose the lemma is true for m — 1; we prove it for m. On clear-
ing denominators we may suppose without loss of generality that all the
filXy,...,Xs) € C[Z1,...,Zn]. Let t be the largest of the degrees in Z,,
of the coefficients in f;,..., f,, considered as polynomials in Z,, with coefl-
ficients in C[Z,, ..., Z;m—-1]). We wish to make each f;(X;,...,Xn) =0 (1 <
j < r) for suitable X; € C(Z,,...,Zm), not all zero. Take

XJ-=aoj+a1jZm+a2]-Z,2n+...+a,jZ;’n (1 §]5n) (56)
where the a;; € C(Z1,...,Zm-1) are to be determined; we take the same s
(large) in each X ;. Insert these values of X; in each

fe(X1,...,Xn)=0

to get equations of the type
25+t
filXa,. o, Xa) =Y APZE (1<i<r) (5.7)
p=0
where the A;,i) are quadratic forms in the n(s + 1) variables a;; appearing
in (5.6) with coefficients in C(Z; ..., Z,,_1). For example suppose, without
loss of generality, fi = a1X? + ... + anX? to be diagonal, where o; are
polynomials in Z,,, of degree at most t with coefficients in C(Z,,..., Z;-1).
Then

fi=0o1 +011Zm +...+baZl a0y +a11Zm + ... + @125 +...
and on expanding and rewriting as a polynomial in Z,, we get what we
want since the highest power of Z,, is 2s +t. Now remembering that there
is also the coefficient of ZY,, we see that there are (2s + t + 1)r quadratic
forms A;,i) in (5.7) in the n(s + 1) variables a;; of (5.6). By our induction
hypothesis these have a non-trivial zero in C(Z,,...,Z,,_;) if
n(s+1)>2s+t+1)-r.2m"!
ie. if
(n=r-2")s>(@+1)-r 2™ —n,

and by choosing s sufficiently large, this inequality can be satisfied. In other
words not all a;; equal zero i.e. not all X; equal zero, as required. O

Proof of Theorem 5.6'. Let L be of degree t over K and let w;,...,w; be
a basis of L/K. If @ € L then

t

a= Za,-w,- (a; € K).

i=1
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Put

t
Xe=Y Usw, (Up €K, 1<k <n). (5.8)
p=1

Then as in the lemma
t

flXa, .., Xa)=3_ BPw, (1<i<r) (5.9)

p=1

where the B,(,i) are quadratic forms in the nt variables Uy, with coeflicients
in K. The number of forms is rt so by the lemma they have a non-trivial
zero in K if nt > r +t . 2™ which is the hypothesis. Thus there exists Uy,
not all 0 satisfying (5.8) i.e. Xi not all zero satisfying (5.9) in L. O

Exercises
1. Show that if F is a field of Stufe s, then
s<P(F)<s+1.
(Hint: say —1 = a} +---+a? (a; € F), then each a in F can be written as

a=(a-;-1)2_(a-2—1>2 (5.10)

2
= (a-;—l) + @ a sum of s squares.

2. Let A be a ring with 1 and let the Stufe of A (defined as for fields) be
s(A) = s. Show that
s < P(A)<s+2.
(Hint: let a € A be a sum of squares, say,
a= cf +--- 03.-
Put z =¢; +---+ ¢, + 1. Show that a — z? is of the form (y + 1) — y? (for
a suitable y). Then

a=1z?+(y+1) + a sum of s squares.

3. Show that if esther 2 is a unit in A or s(A) is even, then P(A) < s+ 1.
If 2 is a unit in A, the identity (5.10) above gives P(4) < s+ 1. So let
s(A) be even. We have

a = a sum of squares

and

—1 = a sum of squares
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So —a = a sum of squares, and by the proof of Exercise 1, —a = a? 4 % — 42
for some o, 8,7 € A, giving v* —a = a® + #2. Also ~1 = 2 +... 4 22 (say).
Multiplying we get using the 2-1dentity s/2 times,
a=yt = (@ + ) 44 2D)
= a sum of squares.

Hence a is a sum of s + 1 squares giving P(4) < s + 1)

4. Prove that P(K(X)) = s + 1 where s is the Stufe of K and X is
transcendental over K (see Theorem 16.3). (By Exercise 6 of Chapter. 3 and
Exercise 1 above, we have s < P(K(X)) < s+1 where s = s(K) = s(K(X)).
If P=s, then X = (L;'—l)2 - (%)2 would be a sum of s squares in K(X).
Then X = fZ + .-+ + f2, f; € K[X] by Cassels’ lemma of Chapter 2. Now
equate coefficients of the highest power of X on the right side to zero to
contradict s(K) = s.

5. Let K be an algebraic number field. Show that P(K) # 1. For otherwise
m =12+ ... + 1% (m terms), a sum of squares in K and so = o® (« € K)
since P(K) =1; ie. \/m = a € K for all m € N giving [K : Q] = o0; a
contradiction.

6. Let K be an algebraic number field which is not formally real (in partic-
ular i € K'). Suppose there is an odd rational prime p which stays prime in
K(i). Show that P(K) # 2.
Hint: suppose to the contrary that P(K) = 2. Since p=1?+---+ 1% isan
S0S, p = o? + #? (a, B € K). Clearing denominators find the least positive
rational integer ¢ such that

t?p=2? +¢ (*)

=(z +iy)(=z —iy) in K[1],

where z,y € [K], the ring of integers of K. But p is prime in K]i], so,
without loss of generality, p|z + iy, and oplo(z + iy), where o is the au-
tomorphism : — —i of K(i)/K. That is p|z — iy, since z,y,p € K. Thus
plz + iy and z — 1y, so p|z and y, giving a contradiction to the minimality

of t in (*)).



6

Introduction to Hilbert’s theorem (1888)
in the Rlng R[Xl, X2, .o ,Xn]

In Chapters 4 and 5 we looked at the positive semi-definite (PSD) functions
and sums of squares (SOS) in the function field R(X,, X;,...,X,). In the
present chapter and the following three, we consider the same problem in the
ring R[ X1, X2,...,X,]. As we shall see, the situation is more complicated
and more interesting as it leads to a number of unanswered questions and
opens up many avenues for research.

Already in 1888, Hilbert [H3] had studied the question of whether a PSD
real form is always a SOS of other real forms. By a form, we mean of
course, a homogeneous polynomial. Denote by P, . the class of all real
forms F(X,,...,X,) in the n real variables X,,...,X, and of degree m
(the n-ary m-ics) which are PSD (i.e. F(a1,a3,...,a,) 2 0 for all a; € R).
We let Z, n be the class of all n-ary m-ics which can be written as sums of
squares of other forms, in fact of n-ary $}-ics, so that m is necessarily even.
We have clearly £, m C Py ;. Hilbert asked:

For what pairs (n,m) s Pp m equal to Tp 7 (6.1)

Hilbert solved the problem completely, his answer being the following.

Theorem 6.1.

(a') Pam = Znm if

(1) n=2,allm (even) > 2,

(ii) alln>2,m=2,

(iil) n=3,m =4, and indeed

(iv) f € P34 implies f is a sum of 3 squares
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(b) In all other cases T,y C (strictly) Pn,m.

Before we give a proof of this theorem, we make a few remarks about its
historical development.

m\" 2 3 4 5
2 v Iiv |V |V
4 Vi Vv X X
6 Vv X X X
8 v X X X

Since m is even, Theorem 6.1 may be summarized in the above chart,
where a tick (/) denotes an affirmative answer to (6.1) whereas a cross (x)
denotes a negative one. Hilbert had already shown that in the two basic
cases (3,6) and (4, 4), it is possible to construct, in principle, forms in P —X.
Why these two cases are referred to as the basic cases will be explained in
the proof of the theorem. Hilbert’s method was rather complicated and
elaborate and did not lend itself to a really practical construction. As a
result, no explicit example was obtained in [H3] and indeed no such example
appeared in print in the 80 years following Hilbert’s paper.

Following through Hilbert’s method, W.S. Ellison (unpublished) worked
out a very complicated ternary sextic which was PSD but not a SOS i.e.
was contained in P3¢ — Zsg6.

Independently of Hilbert’s method, T.S. Motzkin [M2] showed that the
Motzkin polynomial (form)

M(z,y,2) = 2% + 2ty® + 22y* — 322y?2?
(or as a non-homogeneous polynomial, the really simple looking thing
z?y?(z? + y®> — 3) + 1) belongs to P36 — T36. This was, therefore, the
first form to appear in print as an example to prove b) of Theorem 6.1.

Using a drastic simplification of Hilbert’s method and independently of
Motzkin, R.M. Robinson [R8] constructed new examples of forms in Py 4 —
L4,4 and also of forms in Py ¢ — X3 6. More such examples were obtained by
M.D. Choi [C7].

The central idea in Hilbert’s proof is to associate a ternary quartic curve in
the complex projective plane and then to use the classically well-developed
theory of algebraic curves. To quote Choi and Lam, “this beautiful piece
of work, albeit a remarkable testament to the mathematical prowess and
insight of the young Hilbert, is unfortunately not easy to read”. This is so
not only because of the century old terminology, but also because of the use
of various non-trivial facts such as dimension counts, Max Noether’s lemma
and the like that are drawn from the theory of the algebraic curves. We
shall therefore give two proofs of Hilbert’s theorem; one due to Choi and
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Lam [C9] which uses only the rudiments of real analysis and the second, a
modern simplified version of Hilbert’s proof for which my grateful thanks
are due to Professor J.W.S. Cassels. The Choi-Lam proof, however, only
deals with (iii) of Theorem 6.1.

Proof of (a) (i). Let the (real) form be
FX,Y)y=amX™ +am1 X™ 'Y +...+aY™ (a; €R).
On dividing throughout by Y™ and letting X/Y — X, we may suppose
that f is the polynomial
FX)=amX™ + ¢ma X™ ! +... +aq.

We are given that f is PSD, so by Hilbert’s theorem in R(X) (Theorem
4.1), we know that

F(X) = u?*(X) +v*(X) (u(X),v(X) € R(X)).
But then by Cassels’ lemma (see Chapter 2)

F(X) = o3(X) + BH(X) (a(X),B(X) € RIX]).
Thus f(X)eXie. PCXsoP=2X a

We can revert back to the form f(X,Y) by noting that m being even,
Y™ 1is a square.

Proof of (a) (ii). Let the form be f(X;,Xs,...,X,) (n 22, m =2, so
that f is a quadratic form) which is PSD. On completing squares we get
f=afi+...+a-fE=bg —... — bg?
(r+t < n, aj,b; >0). But fis PSD; hence the b; are all 0 and feeding the
a; into the f; we get
f=Wah) +...+(Varfo)? (r<n)
a

Note that here n squares suffice. Thus every PSD quadratic form is a
sum of at most n squares of linear forms (linear since 3+ = 1).

For the proof of (b) of Theorem 6.1, we first note the very important fact
that if we can produce examples of forms in
(i) P;;,s b 23,6 and
(i1) Pys—Zaa
then we can complete the general case very easily as follows:

If F(X,,X,,....X,) is a form of degree m which is PSD, so that m = 2d
say, but not a SOS, then we can construct from it forms of higher degree
which are PSD but not SOS; indeed the form

X2F(X1,Xz,...,Xn)
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is clearly PSD; also it is not a SOS; for if say

k
XIF=Y 12, (6.2)
i=1
then putting X; = 0 in this gives
0= f0,X2,...,Xn) + f3(0,X2,...,Xn) + ...
It follows that f;(0,X2,...,Xn) = 0 for all X,,... X, (since each ff>o0
for all X,,...,X,) i.e. that f;(0,X2,...,Xn) = 0 ie. f;(X1,X2,...,X0n)
vanishes when X; = 0 and so it splits a factor X;:
fj =Xl 'gl(XhXZ"",Xn)-

Hence we may divide out by X7 in (6.2) to get F = g7 +...,+g% giving a
contradiction.

Similarly we may regard F (PSD but not a SOS) as a form in the variables
X1,X,..., X, Xny1 and we easily see that F' is certainly PSD and also
not a SOS of forms in X, X2,...,Xn, Xn41- For if say

k
F(X1, X2, Xa) =) fH(X1, o, Xny Xng1),
=1
then writing f; as a polynomial in X, 41(= z say), we get

k
F= Z(aoj—f-alj:t—f-...—f-a,jjz”f
i=1
where the a;; € R[X,,..., X, ] (1<i<r;, 1 <j<k). Puttingz =0, we
get

k
F(X1,...,Xa) =) a;(X1,... Xa),
=1
which is a SOS of forms in R[X),..., X,,] - a contradiction,
The above remarks may be combined to give the following

Theorem 6.2. If F(X1,...,Xn) € Poym — Zp,m, then

(i) X12' F(Xh “ee ,Xn) € Pn,m+2i - 2n,m+2i
(ii)) F(X1,...,Xn) € Pngs,m — Zas,m. (all s > 1).

Thus to prove (b) of Theorem 6.1, we need only produce examples of
(i) ternary sextics (ii) quaternary quartics which are PSD but not SOS. In
future these two cases will therefore be referred to as the “basic” cases

We now give examples in these basic cases to prove Theorem 6.1, part
(b)-

(1) The quaternary quartic ¢ = (X,Y,Z, W) =
W+ X?Y? + Y22 + 22 X? - AXYZW
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is PSD but not a SOS (of quadratic forms necessarily) i.e.
qEPya—L44
(2) The ternary sextics
S(X,Y,Z)=X*'Y*+Y*Z? + Z*X? - 3X*Y?Z?
and
M(X,Y,2)= 2% + X*Y? + X?Y* - 3X?Y?Z?
are both contained in P36 — L3 6.

That they are all PSD follows by the arithmetic-geometric mean inequal-
ity (AGI) applied respectively to the non-negative quantities

(i) Wt X?Y?Y?7% 72t X?
(ii) X*Y? v4z? z*x?

and

(iii) X*y? vix?, z8.

As for not being SOS, there are two methods of tackling the problem and
it is worth while giving the proof using either of the methods. The first one
compares coefficients and in general turns out to be simpler in principle as
well as in practice. The second one is Hilbert’s original method, or rather
Robinson’s simplified version of it. For this latter method one needs to
determine the zero set &(f) of the form f in question. This in itself is a
very interesting study and leads to some striking results which we shall look
at in the following chapters.

Let us deal with the quaternary quartic ¢ first:

Method 1 to show that ¢ is not SOS. Suppose to the contrary that
¢=) 4} 4 €RX,Y,Z,W] (6.3)

The ¢; are quadratic forms and so involve the following monomials:
X2 XY Xz XW

Y? YX Yw
z? w

W2
But the underlined ones can not occur in any g¢;: for first notice that
X?,Y?,Z? can not occur because if some of the ¢; did have say X? (say

a;jX? appears in ¢;) then equating coefficients of X* on both sides of (6.3)
we get al + a2 +... = 0, which is false since R is formally real. Now we can
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easily deduce that XW, YW, ZW also do not occur in any of the ¢; (again
since ¢ is free of X?W?2 Y?W?, Z2W?).

Thus each g¢; involves only the monomials W2, XY,YZ,ZX. But now
there is no way of getting the term (monomial) XY ZW from 3 ¢%. 0

Indeed this argument works over any formally real field.

Method 2 to show that ¢ is not a SOS. We first have to determine
the zero set &(q) of ¢. Since we know exactly when the arithmetic mean
equals the geometric mean we easily see that

G(Q) = {(1’0’ 0, 0)7 (01 1,0, 0)’ (01 0, 1,0), (17 L1, 1),
(1,-—1, -1, 1),(—-1, 1,-1, 1),(—1, -1,1, 1)}

Indeed the arithmetic mean of a;,a2,...,an is equal to their geometric
mean if and only if the non-zero a; are all equal to each other. Hence
¢(X,Y,Z,W) =0 if and only if
either X’Y? =Y?2?, 2 X2 =W* =0
or Y272 = Z2X? XY =W'=0
or 22 X? = XY Y1Z? =Wt =0
OR X!Y?2=Y?Z?=2Z2X?W*'=0
or X?Y?=Y?Z? =W* Z2’X* =0
or X’Y?=Z’X* =W Y?Z? =0
or 2’ X*=Y?Z* =W* X?Y? =0
OR XW’=VY?Z2’=2'X’=w"
The last set gives the four points
(1,-1,-1,1),(-1,1,-1,1),{(-1,-1,1,1) and (1,1,1,1).
The others are got using the remaining equations. We always view &(q)
projectively since we have homogenized all our polynomials into forms. Thus
(0,0,0,0) is not to be regarded as a zero since it is not a projective point.
Further (0,0,0, §) for example is the same as (0,0,0,1) for all § # 0.
Now it is an easy exercise to show that if ¢; is a quadratic form in
X,Y,Z,W which vanishes on all the above seven points, then
gi=ai(XY —ZW)+ b(XZ -YW)+ ci(XW -Y2Z)
and conversely (trivially). This may be checked as follows: Let
g = aX? +BY 4 4Z2 4+ W2 +aXY +bX Z+cXW +dY Z +eYW + fZW;

then (1,0,0,0) € &(q,) implies 0=a, similarly 0=8=4+. Also (1,-1,~1,1)
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€ 6(q;) gives
0=6—a—-bt+c+d—e—f (9
and similartly 0=é—-a+b—c—-d+e—f (1)
and 0=6é+a—-b—c—d—e+f (i)
and O0=é+a+btc+d+e+f (iv)
These imply § =0, a4+ f=b+e=c+d=0 O

So now if ¢ = Y ¢?, then each ¢; must also vanish on the seven points.
But each such ¢; also vanishes on the eighth point (0,0,0,1). Hence ¢ must
vanish on (0,0,0,1); but it does not. Hence ¢ # Y ¢? as required. 0

This completes the quaternary quartic case using both the methods. We
next look at the two ternary sextics; S denotes the Robinson ternary sextic
and M the Motzkin ternary sextic; the symbol R(X,Y,Z) is reserved for
another beautiful even symmetric ternary sextic of Robinson viz.

R(X,Y,Z)=X® +Y® + 2%
- (X'Y?+Y*Z2? + 2 X* + XY + V224
+Z2X*) +3X?%Y? 22,
which is also PSD but not a SOS. We shall come to this example later in a
different context.

Suppose to the contrary that M = 3" ¢?, where the g; are ternary cubics.

Each ¢; involves the following monomials:

p. &4
Xy X*z
Xy? XYz Xz?
r Y’z Yz YAl

Here the underlined ones can not occur in any ¢; (as for the quaternary
quartic g, first eliminate X*, Y3, Z3; then eliminate XY?,Y Z?, ZX?). Thus
g = a,'XZY + b,'YZZ + c,-Z2X +d; XY 2Z.

But then in ) ¢? the term X2Y2Z2 has coefficient 3 d? which is at least
0, whereas in M, this coeflicient is —3; giving a contradiction.

In case of S, the situation is similar: In the equation S = }_ ¢?, the ¢; can-
not contain the terms X2,Y?, Z% and so also not the terms XY?2,Y 2% ZX?,
giving

¢ = a,-X2Y + b,'Y2Z + c.'Z2X +d; XY Z.
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As before the term X2Y2Z? has coefficient —3 on one side and 3_ d? on the
other side - a contradiction.

It is surprising that the Hilbert-Robinson method fails to work for either
of these two ternary sextics S, M. The zeros of S are

&(5) = {(1,0,0)(0,1,0);(0,0,1); (1,1,1);
(-1,1,1);(1,-1,1);(1,1, 1)}

However one may show that the set of all cubics vanishing on &(S) do not
vanish on an eighth point; hence the method fails for S and similarly it fails
for M; where

S(M) = {(1,0,0);(0,1,0);(1,1,1)

(-1,1,1)%(1,-1,1);(1,1,-1)}.
So much for (b) of Theorem 6.1. It remains to show (iii) and (iv) of part
(a). Before we do this however, we shall list some easy facts concerning
forms and polynomials. These may be omitted by readers conversant with
this topic.
(1) Forms of degree m in n variables may always be replaced by polyno-
mials of degree m in n — 1 variables. For example let
f(X,Y,2)=3X*YZ* +4XY* + 2°Y* + Z°

be a form of degree five. Take the variable Z say; then

2 4 2
f(X,Y,Z)=Z5(3X Y 4X Y ¥ )

7tz mte !
and f may be replaced by the polynomial
e(X,Y)=3X?Y +4XY*+VY? 41
where X — X/Z| Y — Y/Z. Conversely o(X,Y) may be homogenized by
the substitution X — X/Z, Y — Y/Z and f(X,Y, Z) may be recovered.

(2) Suppose F(X;,Xs,...,X,)is a SOS:

k
F=Y fi(Xy,Xz,..., Xn) (6.4)
1=1

where F, f; are polynomials (or forms), F' being of degree m. The highest
degree terms on the right side can not cancel out (as R is formally real),
so they must exactly match the ones on the left side. Hence F' has even
degree: m = 2d. Further each f; has degree at most d and at least one f;
has degree exactly d. If F is a form of degree m(= 2d), then each f; is a

form of degree 3 = d.

(3) The number of coefficients in an n-ary m-ic polynomial F is (m:")

where as, if F' is a form, then this number is ("':fl_l) This is best seen by
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considering examples with small m,n and then using induction:
6] m=2d=2, n=2,

F(X,)Y)=a X* +a; XY + asY? + a4 X + asY + ag;
and there are six coefficients. We have (""T") = (;) = 6 as required. The
corresponding form is a; X2 + a2 XY + a3Y? and there are three coefficients.
We have, as required,

(m+n—1> _ (2+1> _a
n-—1 1
(il) m=2 n=3
F(X,Y,2)=a1X? + a;Y?* + a32° + a4 XY + as XZ + asY Z
+arX +asY +asZ + ajo

m+n 15
(") =(5) =
The corresponding form is
a1X2 + a2Y2 + (13Z2 +as XY +asYZ +aeZX

and, as required,
m+n+1\ (4 -6
n—1 “\2)

(4) In equation (6.4), the number of f; on the right hand side can always
be made at most (™1"), i.e. if a representation of F as in (6.4) is possible
with k large, we can reduce the number of terms to (™}").

Proof. The set of all real polynomials of degree m in n variables form a vec-
tor space of dimension (m:"), a basis being the various monomials. For ex-
ample if m = 2 = n, the dimension is six, a basis being 1, X, Y, X2, Y2 XY

Thus if & > (™!"); then the k polynomials f7, f2,..., f2 are linearly
dependent; say

afif+...+arfi =0 (a; €R).

Let a = max|a;| , where by renaming, we may suppose that o = to;.
Then

ff=bfl+. . +Bafio, 1Bl =

Substituting this value of fZ in (6.4), we reduce k by 1; but introduce
coefficients in front of the remaining terms:

F=fl4.  +f +Bff+. ... +B-1fiy

L+ BT+ + (14 Br-1)fi_1 , where |B;| < 1;
so each of the 1 + §; > 0. Then each of 1 4 §; may be absorbed in f; to

<1.

bt }
«




6: Introduction to Hilbert’s theorem in the ring 81

give F = g7 + ...+ g_,. The process continues until k¥ reduces to ("';:'")
as required.
(5) Let F(X,,...,X,) be a given polynomial of degree m and suppose
\F(Xy,...,Xa)| Sk (*)
for all (X1,...,X,) belonging to a set $ C R" of points with the prop-
erty that S° (S interior) is non-empty. Then we can compute a bound
for the coeflicients of F' by repeated use of the Lagrange interpolation for-
mula as follows: The formula merely tells us that if f(z) is a polynomial
of degree n with coefficients in a field K such that f(z) assumes given val-
ues f(ai1),..., f(any1) at the different points ay,...,an4), then f(z) is
uniquely determined, by the formula (IW4], p. 66)
]
0 a; — oo Mo — aip1) .. (o — an)

Now regard F as a polynomial in X, with coeflicients in the field
R(X1,...,Xn_1); then the condition (*) determines all the coefficients as
bounded. Proceeding by induction we get what was stated.

Thus if k is small, then the coefficients of F' will be small.

(6) Suppose we have a convergent sequence of polynomials of degree at
most 2d:

Fk(Xl,...,X") — F(Xl,...,X") as k — o0.
This could be taken as any one of

(i) pointwise convergence
(ii) uniform convergence on bounded sets
(iii) convergence of the coeflicients of F,.
since they are all equivalent because after all the F,, are well behaved poly-
nomials.
Now suppose each Fy is a SOS:

Fi(X1,- s X)) = fA (X1, ., Xo) + fl(X, .-, Xa)
o (X, X ).

Here, by (4) above, we can suppose s < (“:") and so independent of
k. All of the polynomials fi; are of degree < d and they are uniformly
bounded on any bounded set. Hence by (5) above, their coefficients are
uniformly bounded; so we can choose a sequence of values of k for which all
the coeflicients of the polynomials fi; (7 = 1,2,...,3) will approach limits
i.e. (iil) in (6) holds. The limiting polynomials will give a representation of
F(X,,...,X,) as a SOS of real polynomials.

(7) Regard a real polynomial of degree m = 2d in n variables as a point
in the (""2%)-dimensional coefficient space V. Then
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(I) The PSD polynomials are a closed convex cone C; in V:

(a) closed since clearly the limit of a sequence of PSD polynomials is PSD.

(b) convex since f1, fo PSD implies Af; + (1 — A)f2 is PSD.

(c) cone since f PSD, A > 0 implies Af PSD.
(II) The polynomials which are SOS of real polynomials will also form a
closed convex cone C; (which in general is a proper subset of C;). That C;
is a convex cone is trivial as in (I). That it is closed follows by (6) above
since the limiting polynomial of SOS is itself a SOS as shown in (6).
(II1) Polynomials which are SOS of real binomials (including monomials)
will form a still smaller closed convex cone C3 (check this). And finally,
(IV) Polynomials which are SOS of monomials will give the smallest (so
far) closed convex cone Cj.

Thus we have the following inclusions:

Cs C Cs cC c G cC 1%
SOS of SOS of all PSD all polynomials
monomials monormials SOS of degree at
and binomials most 2d

This last cone C4 lies in an ("td) - dimensional subspace of V' and so being
in a proper subspace of V| it has no interior points.

(V) The strictly positive definite polynomials from the open convex cone
C? and it is easy to see that C = ;.

Remark 1. The reader may consult R.M. Robinson’s paper [R8] for all
these results.

Remark 2. There is an appendix at the end of the book on convex sets.

Exercises

The main theorem of Appendix 1 shows how important extremal forms
are. We have neither developed any techniques nor proved any results in
our text in this direction. An excellent example is provided by Choi, Lam
and Reznick [C11] where all extremal forms for the PSD symmetric ternary
sextics are determined and the interested reader is advised to look at this
paper in detail. The object of these exercises is to develop techniques where
by the three forms S, M, @ defined in this chapter are proved extremal. We
denote the set of all extremal forms of Ppm by £(Pu,m) and of T, m by
E(Zn,m).
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1. Suppose (n,m) # (3,4), (2,m), (n,2) so that E,.,mC’P,.,m. Let f €
Pn,m — Ln,m and write (using the theorem of Appendix 1) f = fi+---+ f,
where f; € E(Pn,m). Show that not all f; are in I, m/2.

2. Show that if a form F € £(Pnm), then (i) X%F € E(Pnm42i) (all
i > 0),
(ii) F € E(Pntjm) (allj 20).

Remark. Thus if we have an example of a form in £(Ps¢) and one in
E(P44), then we get examples of forms in £(P, m) for each pair (n,m) #
(3,4), n>3, m>4.

3. Suppose F' € P; ¢ does not contain any terms in X?Y*,Y2Z4, Z2X* and
suppose F vanishes on the zero set &(S) of the Robinson ternary sextic
S given after Theorem 6.2. By following the hints given below prove that
F = a§ for some real number a.

(i) Show that F cannot contain X® Y® Z® (use the fact that F' vanishes
on (1,0,0),(0,1,0),(0,0,1)).

(ii) Show that F is free of X3Y,X5%Z,Y*Z,Y5X,Z%X,Z%Y (use F is
PSD). Hence write F as

F(X,Y,Z) = X*(aY? + Y Z) + X¥(cY? +--+) ()

(iii) Using f > 0, show that b = 0. Thus F is free of X*Y Z and similarly
of Y4ZX,Z4XY.

(iv) Noting that all the terms in (), except aX*Y? and cX3Y? are divisible
by Z, show by considering the relation F(X,Y,0) > 0, that ¢ = 0.
Thus F is free of X3Y3 and similarly of Y273, Z3 X3. Hence

F={aX'Y?+8Y*Z2? + vZ*X? — 3¢ X?Y?2?%)}
+ XY ZOY2+ XNZH) +Y?ZX(uZ? + ' X?) (*)'
+ Z22XY(vX? +V'Y?) = F* + the rest,
where F* is the curly bracket term. Now let f,(X,Y) = F(X,Y,Y),
f2(X,Y)=F(X,Y,-Y).

(v) Using 6(S) C &(F) show that f1(1,0) = f1(1,£1) = 0. Deduce
that f, is divisible by Y(X? — Y?). Hence using f; > 0, show that
f1(X,Y) = a,Y?(X?-Y?)? and similarly fo(X,Y) = aY2(X?-Y?)%.

Finally using (*) prove that A, p,v, A, p',v' are all zero and that a =

B, —2a = v — 3. Show further, using symmetry, that a = f =y =c¢. It

now follows that F' = oS as required.

4. Show by following the steps given below that S(X,Y, Z) € £(P, ).
(i) Suppose S > F € P3 6. Show that 6(5) C &(F).
(i) Suppose F = aX?Y* 4+ bY22% 4 cZ2X*+ the rest.
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Using F € P36, show that F is free of X% Y> Z% Hence using the
leading coeflicient argument show that a, b, c are non-negative.

Applying the same argument to S — F' (which is non-negative), instead
of to F, show that a,b, c are all non-positive. Hence using Exercise 3, show
that F = aS.

(iii) Deduce that S is extremal i.e. that if S = F; + F; (F\,F> € P3¢)
then F} = aS,F, =85 (a+ 8 =1).

Likewise for the Motzkin ternary sextic we have
5. Suppose F' € P3¢ does not contain terms in X422, Y422 X224,Y?2*
and suppose F' vanishes on &(M) (see p.76). Show that FF = aM for some

a € R. Deduce that M € £(P3 ).
For the Robinson quaternary quartic ¢, we have

6. Suppose F € P44 does not contain terms in X*W?2,Y2W?2, Z2W? and
suppose F vanishes on &(Q) (see page 76). Show that F = aQ (« € R)
and deduce that Q € E(Pyy).

As it happens, it is possible to deduce the extremeness of M and of Q
from that of S. This is done in the following

7. Prove that S € £&(P35) = M € £(P3¢) along the following lines:
(i) Verify that M(X2,YZ,XZ) = X*225(X,Y, Z).
(ii) Suppose M > F € Py, then
X*12%5(X,Y,2) = M(X%,YZ,XZ)> F(X%,YZ,XZ) > 0.
But X*Z2S is extremal, by Exercise 2; so
F(X?YZ,XZ)=aM|X*YZ,XZ), («€R).
Replacing Y by XY/Z this becomes
X°F(X,Y,2) = F(X?*,XY,XZ) = aM(X*, XY, X 2)
= aX*M(X,Y,2).

8. Show similarly that M € £(Ps ) = Q € E(P,4) (see [C11] p. 9).
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The two proofs of Hilbert’s main theorem;
Hilbert’s own and the other
of Choi and Lam.

The main part of Hilbert’s Theorem 6.1 is the following

Theorem 7.1. (Hilbert, 1888) Every PSD ternary quartic is a sum of
squares of ternary quadratics and indeed three squares always suffice.

We plan to give two proofs in this chapter. The first proof, due to Choi
and Lam [C9], uses arguments from elementary analysis - and also makes
use of the Krein-Milman theorem, which is a popular tool of functional
analysts. This proof only shows the first part of the theorem, i.e. that
P3’4 = 23,4.

The second proof is Hilbert’s original. To give the Choi-Lam proof we
need the following.

Lemma 1. Let T(X,Y,Z) € Ps 4. Then there exists o quadratic form
4(X,Y,Z) (#0) such that T > ¢*, where by T > ¢q* we mean of course that
the form T — ¢* > 0 i.e. is PSD.

Proof. Let &(T) denote the set of zeros of T.

Case 1: 6(T)=0. Consider the positive continuous function
o(X,Y,Z)=T(X,Y,2)/(X? + Y? + Z?)*
defined for all (X,7, Z) # (0,0,0). On the unit sphere S? (a compact set)
let u = infy > 0. By compactness of S, u is attained, i.e. u = ¢(a,B,7)
for some (a,8,7v) € S%; so p # 0 since &(T) = 0. Thus
T(X,Y,Z) > w(X*+Y?+2%)? on §? (7.1)
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We claim that (7.1) holds for all the points of R*; for let (o, 3,7) # (0,0, 0)
be any point of R® and let N = \/(a*+8%++?). Then (a/N,3/N,v/N) € §*

and so
a B 7 o2 B Y
22 s Rl AT S
T(N’N’N) —“(m Tt ) o
ie. T(a,B,7) > p(a® + B2 + +?)? as claimed. For the point (0,0,0), (7.1)

is true trivially. Since p is > 0, we see that (7.1) gives, as claimed,

T(X,Y,Z) > (Ju(X? +Y? + Z*))°.

Case 2: |6(T)| = 1. By changing coordinates, we suppose without loss of
generality that 7'(1,0,0) = 0. Write T as a polynomial in X:
T(X)Y,Z)=
AX* + X¥ Y 4+ a22) + X2 f(Y, 2) + 2Xg(Y, Z) + h(Y, Z),

where f,g,h are quadratic, cubic, and quartic forms respectively. Since

T(1,0,0) =0, we get A = 0. Further, for any fixed Y, Z, the X term could

be made negative and to dominate the rest by choosing X large enough,

thus making T(X,Y, Z) < 0, a contradiction. Hence a3 = ap = 0 so
T(X,Y,Z2)= X*f +2Xg + h.

Moreover f > 0, h > 0, since if say, f were not PSD, then we could find

(Y, Z) = (a, 8) such that f(a,) < 0 and choose X large enough to make

T < 0, a contradiction. Similarly if h(a, §) < 0, choose X = 6 so small that

T(8, o, B) stays negative, again a contradiction. Now

fT=(Xf+¢)+(fh—g°) (7.2)
Here fh—g? > 0 for otherwise there exist (Y, Z) = (e, §) such that fA—g? <
0 at (a,3). Then

(Xf+9) =(XOY +uYZ+vZ)+ (0, Y  +922° + 0, Y2 Z 4, Y Z2))2.
Now choose X = § to make the right side equal to zero when (Y, Z) = (o, 3).
Then at (6, a, 3),
(Xf+9)=0
and so at (4, o, ) (7.2) gives
f(0,B) - T(b,0,8) = (fh = 6")(a ) <O
which is a contradiction since f and T are both non-negative.
Now we consider two subcases:

Subcase 1: f is of rank 1. Then on completing squares, f = fZ, where fi is
a linear form, say f; = aY + $Z. The zero set of f; is just (*g, 1) = (8, a)
(projectively). Plugging this into fh — g% we see that (fh — ¢*)(ga) =



7: The two proofs of Hilbert’s main theorem 87

—(g(B,1))? < 0 which is a contradiction unless g(8,o) = 0 i.e. filg, say
g = f191. Then (7.2) gives
FT 2 (Xf+9g) (since fh—g* > 0)
=(XfI + finn)* (since f = f7,9 = fig)
= fiXHh+a)

= f(Xfi + )"
Hence T > (X f1 + ¢1)* as required.

Subcase 2: f is of rank 2. So that f = f2 + f? with fy, f2 linear in
Y,Z and so &(f,) and &(f,) are singleton points. Now f, f, cannot be
simultaneously zero otherwise they would be multiples of each other and
so rankf would be 1. Hence f > 0. Also fh — ¢ > 0 (we have already
shown that fh — g% > 0); for if (b,c) were a zero of fh — g2, then it could
be completed to a zero (—g(b,c)/f(b,¢),b,c) of T (check). But T has only
one zero (1,0,0) so (b,c) = (0,0), which is not admissible and fh — g? has
no zero i.e. fh — g% > 0 as claimed.

Hence now (fh — ¢2)/f* > p > 0 on the unit circle S* (p =
inf(fh — ¢2)/f%)) just as in Case 1 and so fh — g > uf® everywhere.
But then by (7.2), fT > fh — g> > uf® giving T > (\/uf)? O

Case 3: |6(T)| > 2. Here without loss of generality we may arrange the
coordinate system so that (1,0,0) and (0, 1,0) are two of the zeros of T. As
in Case 2, T is of degree at most 2 in X as well as in ¥ and so it is easy to
check that

T(X,Y,2)= X*f(Y,Z)+2XZg(Y,Z) + Z*h(Y, Z),
where f, g, h are quadratic forms as in Case 2. Start with
T =X + Z°8X%Y + 23y XY Z + 36 X2Y2.
where the power in X indicates the number of terms in the summation.

So fT=(Xf+Zg) + Z%(fh— ¢) (7.3)
and here fh — g% > 0 for if fh — g% < 0 at (Y,Z) = (o, B) then taking
X =6=-pBg(a, B)/f(a,B) (don’t forget f > 0) we see that

(FT) 5,08 = (8f + Ba(e, B))* + B*(fh — ¢*)
=0+ B*(fh - ¢%) <0, a contradiction.
If f (or k) is of rank 1, we get the desired result by an argument similar

to the Subcase 1 of Case 2. Hence we may further suppose f and h to be
of rank 2i.e. f >0, h > 0 (again as before). We again consider 2 subcases:

Subcase 1: fh — g?has (b,¢) say, as a non-trivial zero. Let:

a = —g(b,c)/f(b,¢),
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and
T\(X,Y,2) = T(X + aZ,Y, Z)
= X2f +2X2Z(g + af) + Z*(h + 2ag + o* f).
Then
{h(Y, 2) + 209(Y, 2) + &> (Y, 2)} b,
=h+2g9(—g/f)+ f-¢*/F*
substituting the value of a
=h-g*/f

_ hf—f) _o
( f2 (5,0 ’

Thus rank (h + 2ag + a?f) < 1; thus, as in Subcase 1 of Case 2, T} is not
less than the square of a quadratic form and hence so is T, as required.

Subcase 2: fh — g* > 0. Then as in Subcase 2 of Case 2, we have

fh-¢
rrzng 2470

on the circle $* and so fh — ¢* > u(Y? + Z?)f everywhere. Hence
fT > Z*(fh—g*) (by (7.3))
> uZ(Y? + 2%)f
giving, as required,
T > (JEZY): + (VA2
> (VB2

This completes the proof of the lemma. O

We now use the required version of the Krein-Milman theorem; we give
the statement here and say something about it in the appendix on convex
sets.

Theorem. Let & = E(Pr,m) be the set of all extremal PSD forms; then £
spans Pn ;m i.e. every form in Py, 13 a finite sum of forms in £.

Proof of Theorem 7.1. Let T € P; 4 and write
T=T1+T2+ ...+ T}

where the T; are extremal forms of P34 i.e. Tj € £(P34). Apply Lemma 1
to each T;; we see that T; > qf ie. T; — qJ2- is PSD = q_’i say or

Tj=q: +4q; (¢,4; € Psa)
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But T is extremal, so this is the trivial decomposition i.e. T; = q?. So now
T=g+...+4¢% aS08s. a

Hilbert’s Proof. We now give Hilbert’s proof of Theorem 7.1.
Let F be the class of all real ternary quartics F. A typical F has shape

F(X,Y,Z2)=a1 X* + a2Y* + a32% + a4 XY + a5 X*Z
+a6XY? + a1 XZ% +asY3Z +agY Z3 + a1 XY 2+
anY?Z? + a12X*Z? + 013 X’YZ + s XY?Z + a1s XY 22
Using the 15 a; as coordinates, we represent F' as a point in R'® so that
the PSD forms constitute the closed convex cone P = P; 4. The strictly

positive definite forms are the open convex cone P°. Clearly PO =P
Now let A be the set of all ternary quartics F' which can be written as

F=7f"4+4%+n? (7.4)

where f, g, h are real quadratic forms. Since F' is PSD we have A C P.
Again let B be the set of all ternary quartics F' which can be written
as (7.4) with the additional condition that f, g, h have no non-trivial (i.e.

# (0,0,0)) common zero, real or complex. This is Hilbert’s key idea. Then
we have the following

Lemma 2. B i3 open.

Proof. Using the coeflicients as coordinates, we represent an ordered triple
(f,9,h) of ternary quadratic forms by a point in R® (f,g,h have shape
a1 X? 4+ a2Y? + a32? + a4 XY 4+ asYZ + agZX). The map

(f,9,h) = F = f* 4+ ¢* + 1? (7.5)
is an algebraic map R'® — R!®. Consider this map in the neighbourhood of
(fo, 90, ho), where fo,go, ho have no common (real or complex) non-trivial
zero, so that Fy = f&+ g2 +h? belongs to B. We want to show that each F in
a sufficiently small neighbourhood of Fj is also in B; so let u, v, w be ternary
quadratics and let § be small. Then (fy + u©6)% + (g0 + v6)? + (ho + wé)?
belongs to a sufficiently small neighbourhood of Fy. It equals

FO + 2(ufo + V9o + UJho)a + 0(62)

Consider the so-called tangent map of (7.5):
(u,v, w)—?—>2(ufo + vgo + who). (7.6)
Here again, & is a linear map from R'® of triples (u,v,w) — R!® of ternary

quartics 2(u fo + vgo + who). What is the kernel of 7 It can be shown (see
Appendix 1 to this chapter) that under the condition that fq,go, ho have



90 Squares

no common zero, we have ufy + vgo + who = 0 if and only if there exist
constants A, p, v such that

u = vge — phe
v = /\ho - Vfo (77)
w = pfo — Ao

Thus
(u,v,w) € ker @ if and only if ufy + vge + whe =0
i.e. if and only if (7.7) holds, which gives a condition on u, v, w viz. if
fo=a1X?+aY? +a3Z2 + a3 XY +asYZ + agZX
90 =0 X2+ boY? 4 0322 + 04 XY +bsYZ + 062X
ho=c1 X2+ Y2 +c3Z22 + 4 XY +esYZ + c6ZX,

then a basis for ker ® is

El = (bl,bg,bg, e ,be, —Q1,—A2,..., “06,0,0,0,0,0,0)
by = (_01’_62,' o ,“CGaOaOaOaOaO,O’aI,GZ,' o ,aﬁ)
Uy = (0,0’0)0)0,0a01,02)" ',CG’_bl;_b2a" 'a'—bG)

since (u,v,w) € ker ® iff (7.7) holds, i.e. iff (check this)
(u,v,w) = vuy + Avg + pv,.
Thus ker ® has dimension 3. If follows that
dim (image) = dim (domain) - dim (kernel)
=18 - 3 = 15;
but this is just the dimension of the image space. Thus ® is onto. Hence by
the implicit function theorem, (for some explanation see Appendix 2 to this

chapter) every F in some neighbourhood of Fy can be written as f2 4+ ¢2 4 h?
with £, g, h having no common (real or complex) zero. So F € B a

What is the closure of B? We have

Lemma 3. B C A and further if F € B and F ¢ B then either F g P°
or the curve F(X,Y,Z) = 0 in the complez projective plane has at least two
(real or complez) double points.

Proof. B C A trivially and A is closed so B C A. Further since F € B (C
A) and F ¢ B, so

F= f2 + 92 + h2
where f,g,h have a non-trivial common zero H = (a, 3,7), possibly com-

plex, so that F(a,8,v) = 0. If H is real then F vanishes at the real
point (a,3,7), so is not strictly positive definite i.e. F ¢ P° as required.
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Otherwise H is distinct from its complex conjugate 7{ i.e. represents a dif-
ferent point in the complex projective plane. Then both H = (e, 8,7) and
H= (a B, %) give double points of F(X,Y,Z) = 0 since either pomt is a
zero of f, g, h, so a double zero of f?, g2 A% i.e. a double zero of f? + ¢ + A?
i.e. a double point of F(X,Y, Z) = 0 as required. d

The property of having at least two double points imposes two algebraic
conditions on the coefficients of F. Hence the set £ of real F' with at least
two double points has codimension at least two. We can now prove Hilbert’s
main

Theorem 7.1. P = A.

Proof. Clearly A C P. To prove that P C A let F; € P and we wish to
prove that F} € A. Since £ has codimension two, we can chose Fy € B such
that the line segment

Fo=(1-t)F, +tF, (0<t<1)

does not meet &, except possibly at Fy. Since Fy € B C P° and F} € P so
Fye PP for 0 <t <1 (P,P° are convex). By Lemma 3, F; can be on the
boundary of B (i.e. in B — B® = B — B (since B is open)) at worst only for
t = 1 (for suppose F; € B, F; ¢ B°(= B); then by Lemma 3, since F; € P°,
so the curve F; = 0 has at least two double points i.e. F; € £ sot =1).
Hence Fy € Bfor 0 <t <1 and so F; € B C A as required.

Appendix 1

We prove the following result used in Hilbert’s proof of the theorem.

Lemma 4. Let f,g,h; u,v,w be quadratic forms in XY, Z and suppose
that

uf +vg+wh=0 (1)

and that f, g, h have no common non-trivial zero (over the algebraic closure).
Then there are constants A\, u,v € C such that

u =vg — ph,
v=Ah—vf,
w=puf — Ag.

Proof. It is enough to show that w is a linear combination of f, ¢ with
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coeflicients in C; for once this is done, i.e. once we have proved that

u =g +ash
v=Ff+ Bsh
w=mf+g.

(1) gives (B3 + v2)gh + (a3 + )hf + (az + B1)fg = 0. Now substitute for
(X,Y,Z) a zero of f which is not a zero of g or of h and we get 83 ++2 =0
and similarly a3 + v, = 0 and a2 + £ = 0 giving what is required.

It is clear that f,¢ have only finitely many common zeros (the four in-
tersections of the conics f = 0,¢ = 0) and so after a linear change of
coordinate system, we may suppose that the line X = 0 (the side of the
triangle of reference) does not pass through any common non-trivial zero of
fr9

We now use Hilbert’s Nullstellensatz (see Van der Waerden, Modern Al-
gebra Vol.II, pp. 5-6): if ¢ € K[X,,...,X4] is a polynomial which vanishes
at all the zeros common to the polynomials fi, f2,..., fg; then for some
integer n, we have

fr=0(f1,-.-, fs)
i.e. f* is a linear combination of fi,..., fg in K[Xi,...,X,]
Apply thisto o = X € K[X,Y, Z], which vanishes at all the zeros common
to f,g,h (vacuously as there are no such zeros). So by the Nullstellensatz
X"=rf+sg+th (2)
for some integer n > 2 and forms r,s,t of degree n — 2 in X,Y, Z.
Multiplying (1) by ¢, (2) by w and subtracting, we get (rw — ut)t + (sw —
vt)g = wX" i.e. say
bf +cg =wX" (3)
where b, ¢ are forms of degree n.
Now suppose n is minimal in (3). If n = 0, we are done. If n > 0, we get
a contradiction as follows:
Put X = 01in (3) to get
bofo + cogo =0 (4)
where 5(0,Y, Z) = by etc. Now by our choice of the line X = 0 we see that
fo, 90 have no common zero and by (4) if we substitute for Y, Z a zero 7,(
of fo, we see that fo|cy in K[X,Y, Z]; say —co/fo = d = by/go (similarly),
ie.
by = dgo, co = —df, for some d € K[X,Y, Z] (5)
Now by replacing b, c in (3) by b—dg, c+df, we may suppose that b, ¢ vanish
at X = 0 (by (5)) i.e. that X|b,c. But then we may cancel an X in (3) to
get a smaller n for which (3) holds giving the required contradiction. (|
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Appendix 2

The standard implicit function theorem, as given say in W. Rudin’s Prin-
ciples of Mathematical Analysis is as follows:

Theorem (Implicit function theorem) Let F;(X,Y) (1 <j < n) be
n continuously differentiable functions of the m + n wvariables
X=(Xy,...,.Xm), Y=(N,..., 1),
defined in some neighbourhood of (X,Y) = (a,b). Suppose that Fj(a,b) =
0 and that at (a,b) the n x n matriz (g—l;f) i3 non-singular. Then in some
neighbourhood of X = a, there are n continuously differentiable functions
Gk(X) (1 € k € n) such that F;(X,G1(X),...,Go(X)) =0 (1 <k <n)
and (Gy(a),...,G.(a))=b.
What we need is the following

Corollary. Let F;(X,Z) (1 < j € n) ben continuously differentiable func-
tions of the m + N variables X = (X1,...,Xn), Z=(Z,,...,ZN) in some
neighbourhood of (X,Z) = (a,c), where N > n. Suppose that Fj(a,c) =
0 (1 < j £ n) and that the rank of the n X N matriz M = (%{: XeaZee
(1<j<n1<Lk<N)isn. Then there are continuously diﬂerentiable
functions G(X) (1 < k < N) such that F;(X,G1(X),...,Gn(X) =01 <
j £ n) and (Gy(a),...,Gn(a)) =c.

Proof. Since the rank of M is n we can select a non-singular n X n minor.

On renumbering the variables Z;,...,Zy, we may suppose without loss of
generality, that the n x n matrix (g_?“:)x 1<j<nl1<k<n)
=a,Z=c

is non-singular. Then we put Gi(X) = ¢x (n < k < N). The theorem
applies to the functions FJ-*(X,Y) = F;(X,Y,co41,..-,¢n) where Y =
(Z1,..-,24),(c15...,cq) =h.

In the application to Hilbert’s theorem, we have m = n = 15, N = 18,
The X = (X,,...,X15) are the coefficients of the quadratic form. The
Z = (Z1,...,7Z13) are the 3 x 6 = 18 coeflicients of the quadratic forms.
The equations Fj(X,Z) = 0 are just the statement that the quartic form is
the sum of the squares of the three quadratic forms. Finally the statement
that the rank of the matrix M is 15 is just the result proved in Appendix 1
above.
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Theorems of Reznick and of Choi, Lam and
Reznick [R4], [C12]

Hilbert’s conjecture for the function field K, = R(Xi,...,X,) and the
subsequent proof of the conjecture given by Artin partly closes the topic
so to speak; this result followed by Pfister’s theorem almost completely
closes the topic as it were in the sense that the only question that remains
regarding this is the exact value of the Pythagoras number P(K,) of K,
and it would be a very difficult invariant to determine in general.

For the ring R[X}, ..., X;], we have now seen that the set Ap m = Poym —
Z,,m is non-empty except for the pairs (n,m) = (2, m (even)), (n,2), (3,4)
and it is precisely this fact that makes life so interesting and leads to so
many natural questions, mainly about the nature of the set Apm. For
many of these questions it is enough to consider the two basic examples
Az and Ay 4, answers in the general case being easy corollaries in most
cases to the answers in A3¢ and A44. Hence we shall mainly concentrate
our attention on these two basic examples and indeed on Aj ¢ as the other
case Ay 4 usually turns out to be a little more complicated; but similar in
principle to the Aj ¢ case.

Reznick’s theorem on the “simplest” elements in Ajg.

The simplicity of Motzkin’s and Robinson’s examples of forms belong-
ing to Az ¢ and to Ay 4 contrasts with the complexity of Hilbert’s original
method of constructing such forms. However, there may conceivably be
still simpler examples of forms belonging to A3z ¢ or A4 4. By “simpler” we
mean of course ones with fewer number of terms (monomials). Our first
striking result is that such examples of ternary sextics involve at least four
monomials.
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Theorem 8.1 (Bruce Reznick). Suppose the ternary sectic
f(X1,X2,X3) € Az g =Pag — Xag;

then f involves at least four terms.

Remark 1. In [R4], Reznick determines all the four-term extremal forms
in Agm for n = 3, m < 12 and gives a method of constructing such
“simplest” extremal forms for other values of n and m.

Remark 2. Although we shall give a proof in Az ¢ we could have just as
easily worked in the general case up to a point. However, the examples are
best understood and visualized for small values of n and m.

General definitions and notations. Let
k

p(X1, Xz, Xn) = D @XM X2 X
=1

be a form of degree m (m = 2d) so that

k
Sorj=m (i=12,...,k) (8.1)
=1
We write X = X, X,...X, (not an n-vector; just a notation) and r; =
(ri1,7i2,...,Tin) (an n-vector in R", indeed in Z"), where we suppose r; to

be distinct n-tuples (i.e. if r; =r;, , then the two corresponding terms can
be joined up into a single term (a;, + a;,)X™1) and we suppose also that
a; # 0 (i.e. if a; = 0, we simply omit the term corresponding to a;). Then

p(Xy,...,X,) is abbreviated to

p(X1, Xz, o, Xa) = ) @i X5 (8.2)

Example 1. n = 3, m = 6 and take the variables as X,Y,Z. We write
the terms of p(X,Y, Z) in lexicographical order:
(XY, Z2)=a1X® + a: XY + a3 X°Z + as X*Y? + a5 XY Z
+ a6 X2 + a: X3Y3 + ...+ agZ8

L= (G’an)’ L, = (5’110)’ I3 = (5,0,1),...,123 = (0’0’6)-
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We see that the sum of the coordinates of each r; is 6 : riy + ri2 +ri3 =6
for all i (verifying (8.1)).

Definitions.

(i) C(p), the cage of p, is the convex hull of the r;’s. Then C(p) C R?;
indeed all the r; lie in the plane X +Y + Z = 6 for our example.

(iil) F(p)= C(p)NZ™. Thisis the set of all lattice points in C(p).

(iii) E(p) = set of all extreme points of C(p) so that E(p) C points defined
by the r;; all are therefore lattice points.

In general C(p) C (n — 1)-dimensional hyperplane but if some of the a;
are 0, then C(p) could lie in a smaller dimensional hyperplane; for example
in the ternary sextic case C(p) C the plane X +Y + Z = 6, but if for
example,

X,Y,2) = a1 X® + a2 XY + a1, X?Y* + aY?®
then C(p) is spanned by the vectors (8,0, 0),(5,1,0),(2,4,0) and (0,6,0)
and so all lie on the line
X+Y+2Z=6, Z=0.

Example 2. n =2 m =2, pX,Y) = e X? + ;XY + a3Y?, 1, =
(2,0), r, = (1,1), r; = (0,2). All the r; lie on the line X + ¥ = 2. Thus
C(p) is the line segment joining (0, 2) and (2, 0). F(p) = {(0,2),(1,1),(2,0)}
and E(p) = {(0, 2&(2»0)}-

N
$0,2)

1)

(2,0)~_

Exercise. Prove that C(p?) = 2C(p).
28
So now let p(X,, X2, X3) = Ea,-iﬁ" be a PSD ternary sextic. We prove

i=1
a series of necessary conditions for p to be in Az ¢. Let then p € As.

Lemma 1. If p is PSD and ry, € E(p), then ax > 0 and ry i3 an even
vector i.e. Tx1,Ta2,Ta3 are all even.
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X1+ Xs+X3=b

T

Proof. Choose a plane Il : pX = d (i.e. b1 X1 + b2 X, + b3 X3 = d) through
r so that C(p) lies on one side of II (see the figure). Then since II has been
chosen to go through ry, we have b-r, = die. byiry; + baraz + b3raz = d;
and for all other points of C(p), in particular for the other r; (¢ # A), we
have b-r; —d < 0 i.e.

brry<d=b-ry (i#)) (8.3)
Now take
Xy = +th
X, = +t%
X5 = +t»
(independent signs). Then for t > 0, since p is PSD, we have the.following:

0 <t™p(t)

k
=174 " ai(th )i () (tbe)

i=1

k
= Z a'.(:t]_)"l'l(:t]_)rl'z(:tl)"l'stblr-‘1+bzrizbaria"d.
i=1
Here the power of t is
{é-;,-—d < 0if i # X (by (8.3)).
= 0if:= A
Now let t — 0o and we see that all the terms in the summation tend to 0
except ¢ = A which becomes ax(£1)™1(£1)™2(£1)™>. Hence

0 < ax(F1)™ (E1)2(£1)™s (8.4)
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It follows that ay > 0 and that 7,7 2,73 are all even since in (8.4) we
are allowed arbitrary choices for the signs 4+, —. a

Lemma 2. Not every r; = (ri1,7i2,7i3) can belong to E(p).

Proof.  (ri1,Ti2,7i3) € E(p) implies a; > 0, ri1,7iz,7i3 are all even (by
Lemma 1); say r;; = 2r}, etc. Then

3
p= S (VX XX
=1

which is a SOS, a contradiction. Thus our p must have at least one r; =
(7i1,7Ti2, Ti3) non-extremal. 0

Lemma 3. C(p) cannot be 1-dimensional

Proof. Suppose it is; then E(p) (a subset of C(p)) is also 1-dimensional
(i.e. a line segment) and so consists of just two points, (ra1,72,723) and
(7u1,7Tu2,Tu3), say, and by reindexing if necessary, we may take these points
as
£y =(r11,M2,713), Lk = (Tk1,Tk2,Tk3)-
Note Ath is called the first and uth the kth; k remember is the number
of terms in p i.e. 28; and we want to determine the minimal value of
k for which p € Ajz¢. Since r,r; are extremal, aj,ax > 0 and all the
711,712,713, Tk1, k2, Tk3 are even (by Lemma 1). Hence
'y —n, = (Tkl,Tkz, Tks) - (7'11,7‘12,7"13)
= 2d(s1, 52, 83), = 2ds say
where 2d is the gcd of k1 —711,7k2 — 712, Tk3 —713 and where ged(sy, $2,33) =
1, so that at least one s; is odd. Now C(p) is the convex hull of E(p) i.e.
all the (r;1,7;2,7j3) (j # k,1) are a convex combination of r,,r;, i.e.
ry=ajrg+(1-aj)r, (0<a;<1)
=aj(t —n) + 1
=qj-2ds+r,
=1, t+¢ys,

say, where ¢; = 2da; < 2d. So now
k

p(X17X27X3) = Zai_&‘!"i

i=1

k
= E a'-__-tl +eia
i=1
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i=1
= X5 za,-f-' (say) (8.5)
where ¥ = X* = X' X;?X;*. Here, as we have noted above, at least one

s; is odd.

Let X vary over all 3-tuples with X; # 0 (i.e. avoiding the three axes);
then Y ranges over all non-zero reals ¢ (the negative ones being got from
the odd s; on taking the corresponding X; negative). Then (8.5) becomes

p(X)=X" ) ait* (teR").
But X% > 0 since r, is an even vector, being extremal and p(X) > 0 being

PSD. It follows that _ a;t% > 0 for all t # 0 and so for all ¢, including O,

by continuity (if it were negative at t = 0, then there would be a neigh-
k

borhood [—¢,¢] of 0 in which it would be negative). Thus Zagtc" is a

1=1
PSD polynomial in one variable ¢ and so it is a SOS - in fact a sum of two
squares fZ(t) + f2(t); see Theorem 4.1. Going back from ¢ to ¥ and on to
X1, X2, X5, we see that p(X) is a sum of two squares, indeed;

p(X) =XT X2 X2 (FH( X1, X, X3) + F2(X1, X2, X))
(X[ Xpi X80 £)? 4 (X]0 Xpi X fy)?

which is a contradiction, since p is not a SOS.
This proves Lemma 3. O

Proof of Theorem 8.1. Qur p must have C(p) of dimension two (Lemma
3) and so at least three extremal r; spanning C(p) and at least one non-
extremal r; (Lemma 2). Thus k is at least 4. (]

Since both forms
S(X,Y,Z)=X*Y*+Y*Z? + Z*X? —3X?*Y?Z? (Robinson)
and
M(X,Y,2)=Z% + X*Y? + X*Y* - 3X?Y?Z? (Motzkin)

belong to A3 ¢ and are made up of exactly four terms, we see that they are
indeed the simplest possible ones.

One naturally asks if there are more such four term forms in A3 ¢. Reznick
gives necessary and sufficient conditions for a four term form to be PSD but

not a SOS; in fact for such forms to be extremal. For more details see

[R4].
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For quaternary quartics, it may likewise be shown that
WX,Y,Z,W)=W*+ XY? +Y?Z? + Z:X% —4XYZW

is the simplest example in A4 4 (see [R4]).

The Choi, Lam and Reznick theorem on zeros
of forms in A,

We have come across forms belonging to P3¢ — £36 = Aje and others
belonging to Ay 4. It so happens that known examples of such forms p have
|&(p)|] < oo. The surprise is that this is the case for all forms in A ¢ and
in Ay 4. Indeed we have the following remarkable

Theorem 8.2 (Choi, Lam and Reznick) [C12].

(A) Letp € P3¢ and suppose |S(p)| > 10 then p € T3 6; in fact p is a sum
of three squares of cubics.
(B) Letp€ P44 and suppose |S(p)| > 11 then p € L4 4; in fact p is a sum
of siz squares of quadratics.
Further in both cases |S(p)| = co.

Remark. We shall only prove (A). The proof of (B), although similar, is
distinctly more difficult. The interested reader may consult [C12].

In striking contrast to this result is the fact that Theorem 8.2 is peculiar
to ternary sextics and quaternary quartics. In fact beyond these two cases,
it is easy to show that if A, # 0, then forms with infinitely many zeros
may be found in plentiful in A, ,,. Indeed we have the following

Theorem 8.3. Suppose (n,m) > (3,6) (i.e. eithern >3, m >6 orn >
3, m>6) or (n,m) > (4,4); then there ezist p € Ay m,with |S(p)| = oo.

Proof. First take the case (n,m) > (3,6). Then clearly the form
P(X1, Xz, .., Xn) = X7*7° S(X1, X2, X3) € Anym.

We shall prove that |&(p)] = oo. If m = 6, then n > 3 and so
(L,L,L,X,,...,X,) € 6(p). Since Xy4,..., X, (n > 4) can take an infinity
of values, it follows that |&(p)| = oo as required.

If m > 6, then (0, X,,...,X,) € 6(p) and so again we have an infinity
of zeros of p.

If (n,m) > (4,4), we use instead the form

p(Xl,Xg,. . .,Xn) = X;n_GQ(Xl,XQ,X3,X4)

and proceed similarly.
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Reminder : S(X,Y,Z) = X'v? +Y*Z? + Z'X? - 3X?Y*Z?,
QX,Y,Z,W)=W* + X?Y? +Y?2% + Z*X* —4XY ZW.
In the case A,,m = 0ie. when Pp m = Ln m we have the following result
about the cardinality |&(p)| of any PSD form p € P, in:

Theorem 8.4.

(i) Let p € Pa,m, then |S(p)| < m/2
0 ifrankp=n
(11) Let pE P,,,g, then lG(p)l = { 1 if rank p=n-—1
o0 otherwise
(ili) Let p € P34, then either |S(p)| = oo or |S(p)| < 4 and 4 is the best
bound.

Proof. (1) Converting p(X,Y) to a polynomial, we get p(X) = ao +
a1 X +...+ap,X". Factorizing this over R, only linear and quadratic factors
appear as irreducible factors. Since p is PSD all linear factors occur to an
even multiplicity; and since the quadratic factors contribute no real zeros,
the maximum possible number of zeros occur when p(X') factors as
p(X) = {(a1 + 01 X)...(ag + baX)}? (d=m/2)
and then we get one zero from each distinct factor so |&(p)| < d =m/2 as
required.
(i1) Making a linear change, we may take
(X1, X)) =X+ + X2
where r is the rank of p; r < n. If r = n, then being a SOS, p is never
0 over R except at X; = 0,...,X, = 01i.e. at (0,0,...,0) which is not a
projective point at all, so &(p) = 0 as required. If r = n — 1, then
p=X 4. . +X_,
and the only zero of p over R is clearly (0,0,...,0,p) where p is any real
number. Thus |&(p)| =1. If r < n — 1, then there are at least two missing
X’s in p and so (0,0,...,0,p1,p2) is a zero of p for all p;, p, € R giving
[

n-2
|&(p)| = o© as required.
(ii1) The proof of this will be given later. O

Our aim is to prove that if p € A g, then |S(p)| < co. We prove a few
lemmas first.

Lemma 4. Letp be an n-ary m-ic and X # 0 an n-ary linear form. If
S(A) C S(p), then Ap. If moreover p is PSD, then \?|p; divisibility in the
ring R[X,,...,Xa] of course.



102 Squares

Proof. Let M(X1,...,Xn)=a1X) +...+ anX,, where say without loss of
generality, a; # 0. Using the non-singular linear transformation of variables

X1 - (X1 —aXo—...—anXn)/a
X, — X2
Xn— Xn
we may suppose that
AX) = X,.
The truth of the lemma is now immediate. a

The following lemma. is crucial:

Lemma 5. Let f(X;...,X,) be an n-ary form with n > 3. If |&(f)| <
oo, then one of £f is PSD (i.e. any indefinite n-ary form (n > 3) has
infinitely many real zeros).

Proof.  Suppose f(X) is indefinite. Then there is a point g for which
f(@) > 0 and a point b for which f(b) < 0. By continuity, f(¢) < 0 for all ¢
in some neighbourhood N of §. For any such ¢, the line g ¢ meets f(X) = 0.
Clearly by varying ¢ we obtain infinitely many zeros of f(X). d

Lemma 6. Let p(Xi,...,Xn) be an irreducible polynomial in
R{X,,...,X.]- Then p becomes reducible in C[X,,...,X,] if and only if
one of £p is a sum of two squares in R[X,,..., X,].

Proof. If £p = fI+ fZ, fi,f2 € R[Xy,...,Xu], then p = £(fi +ifs)
(fi = if2) is reducible in C{X},...,X,]. Conversely suppose p factors non-
trivially in C[X,,...,X,] as say

p=(r1 +ir2)(s1 +1s2); r1,72,81,52 € R[X),..., Xy].
Taking complex conjugates gives p = (1) —ir3)(s; —is2). Multiplying we get
p? = (r? +r2)(s? + s%). But now R{X,...,X,] is a UFD, so p = a(r? +r3)

for some @ € R. But one of +a is a square in R, if say a = 5% then
p = (br1)? + (bry)? where as if —a = b? then —p = (br1)? + (br2)? as
required. (I

Lemma 7. Let p(X,Y, Z) € P, be irreducible in R[(X,Y, Z]. Then
m?
16(p)] < max (T,(m —1)(m - 2)/2) |
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Proof. First suppose p is reducible in C[X,Y, Z]; then by Lemma 6, +p =
r? + 73 (r1,r, forms of degree m/2 in R[X,Y, Z]). So &(p) = &(r1) N &(r2)
(since & denotes the real zeros only and p = 0 if and only if 7} + v = 0
i.e. if and only if r = 0 and r, = 0). Since p is irreducible in R[X,Y, Z] so
ry,r2 are relatively prime and so the plane curves r; = 0 and ro = 0 can
not have any common components. Hence by Bezout’s theorem [W1], these
two curves can intersect in at most 3t - 2 points in the complex projective
plane. In particular |&(p)| = |&(r1) N &(rz)| < m? /4 as required.

For the remaining case we suppose p is irreducible in C[X,Y, Z] and so p
defines an irreducible plane algebraic curve C in the complex plane. Since
p is PSD each real zero («, 3,7) of p is a minimum of p, an extreme value,
and so (a, 8,7) is also a zero of %, g-}%, gJZ’- i.e (a,B,7) is a singular point
of C; but C, being irreducible has at most (m — 1)(m — 2)/2 singular points
and so 6(p) < (m — 1)(m — 2)/2 as required. a

As a corollary we have the following

Theorem 8.5. Let p(X,Y,Z) be an irreducible PSD ternary quartic with
|&(p)| 2 4. Then p is a sum of two squares in R[X,Y, Z].

Remark. According to Hilbert’s theorem (Theorem 6.1(a)(iv)), since p is
PSD, it is a sum of three squares; so under the extra condition |&(p)| > 4,
two squares suffice.

Proof. Suppose p is irreducible in C[X,Y, Z]; then it has at most three
singular points: (m—1)(m—2)/2 = (4—1)(4—2)/2 = 3, and so by the proof
of Lemma 7, since a zero of p has got to be a singular point, |&(p)| < 3
contrary to our hypothesis. So p is irreducible in C[X,Y, Z] and hence by
Lemma 6 one of +p is a sum of two squares in R[X,Y, Z]. But pis PSD so
p (and not —p) is a sum of two squares. O

et 2

ternary form, we are only interested in pu(m) when m is a positive inte-
ger.

It is easy to check that:

. m?/aif m <5

@) wum)= {(m/— 1)(m—2)/2i m> 6.
(il) u(m)/m is monotone increasing.

From these one immediately deduces the following so called “superaddi-
tive” property of the p function:

Write p(m) = max (’“—2 i’“_—lﬁL“;?Z) Since m is the degree of our
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Lemma 8. pu(m;)+ p(mz) < pu(my + ma).

Proof. Since p(m)/m is increasing
p(ma)/my < p(my + me)/(my + ma)
p(ma)/mz < p(my + mz2)/(ma + ma).

Hence
p(my +my) p(my + ma)
< +m
p(m1) + p(ma) < my pepra— e——
= #(ml + m2) a

We are now in a position to prove the following main result:

Lemma 9. Letp € Ps . The following conditions are equivalent
() 16(p)| > u(m)
(ii) |8(p)l = o0

(1ii) p is divisible by the square of some indefinite form.

Proof. (ii) implies (i) is trivial. (iii) implies (ii} goes as follows: Suppose
f?|p where f is indefinite; then by Lemma 5, |S(p)| = oo; but &(f) C &(p),
so |&(p)| = oo.

It remains to prove that (i) implies (iii). We do this by induction on m.
For m = 2, y(m) = 1 and the form p in question is a PSD ternary quadratic
with |&(p)| > 1 i.e with at least two zeros. Take p diagonal without loss of
generality:

p=aX®+0bY? +cZ2.
We now take the two zeros of p to be the points (0,0,7),(0,3,0) where
B,y # 0. Then ¢ = b =0 giving p = aX?. Since p is PSD, we have a > 0
and so p = (vaX)? ~ X? i.e. p may be taken to be X? and as asserted in
(iii), p is divisible by the square of the indefinite form X. a

In general suppose |&(p)| > u(m). Then by Lemma 7, p is reducible in
R[X,Y, Z], say
P=qg2...qr (r22),
where each ¢; € R[X,Y, Z] is irreducible. Let m; = degg;.

Case 1. All g; are semi-definite (i.e. PSD or NSD). Adjusting by +1, if
necessary, we may assume that they are all PSD. Then there must exist an
index 1 such that |S(¢;)] > u(m;) for otherwise

IS()I < 316(a) < Y u(ms) < (3 mi) (Lemma 8)

= p(m),
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a contradiction. Suppose without loss of generality that |&(g1)| > p(mi).
Since m; < m, by the induction hypothesis, the PSD form ¢, is divisible by
the square of some indefinite form ¢ : ¢?|q;; so ¢?|p as required.

Case 2. One of the g; is indefinite. Hence by Lemma 2, |S(g;)| = oo and
so |&(p)| = oo (so in fact (ii) is proved). Now p = p(X,Y, Z) can not be
free of all the variables; say without loss of generality that p involves X, so
g}% # 0. Now consider the two plane curves C,,C; defined by p = 0 and
g)% = 0. Since p is PSD, the zeros of p are extreme values of p (minima)

and so satisfy % =0. Thus 6(p) Cc & (%’?) i.e. C; NC; contains the

infinite set &(p) and so C;,C2 have a common component; i.e. p and g}—

have an irreducible real common factor; call it . Thus h|p, h|§§. Write

p = hg. Then % = h%’(- + gg)h—(. Here we have h|§§; hence
Oh

hlg=— 8.6

lozx (8.6)

Subcase 1. h is free of X i.e. h = h(Y,Z). Then €& =0. If h has a
real zero, it splits a linear factor aY + bZ (by the factor theorem). Then
aY + bZ|p and so by Lemma 1, (aX + bY)?|p as required. If A has no real
zero, then h is semi-definite (for if not, then it would take both positive and
negative values and so would vanish somewhere by continuity i.e. have a
real zero), and by a change of sign, we may suppose h is PSD. Since p = hg,
g is also PSD. Now as a ternary form h(X,Y") has the unique zero (1,0, 0)
and so since |S(p)| = oo, we must have |S(g)| = oo i.e. (ii) holds for g and
so (i) holds for g and since degg < degp, by the induction hypothesis, g is
divisible by the square of an indefinite form ¢ : ¢?|g and so ¢?|p since g|p
as required.

Subcase 2. % # 0. Here since h was chosen irreducible, we have by (8.6),
hlg say g = hq. Then p = hg = h%q. If h is indefinite then we are through.
If not, without loss of generality, k is PSD. Since 4 is irreducible, by Lemma
7, |6(h)| < 00 s0 |S(q)| = o0. Since ¢ is also PSD and degg < deg p, by the
induction hypothesis, there exists an indefinite form ¢ with ¢?|g so ¢?|p as
required. O

Remark 1. The moral of Lemma 9 is that if the number of zeros of

P (€ Ps,m) is sufficiently large (> p(m)), then this number is infinite and
further that p factorizes as p = h%q, where & is indefinite.

Remark 2. Lemma 9 is peculiar to ternary forms. For four (or more)
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variables, the form X2?Y? + Z2W? is irreducible but vanishes at all the
points (a,0,+,0); an infinity of them.

Lemma 10. Letp(X,Y, Z) be any ternary form. The following statements

are equivalent:

(i) p is semi-definite (i.e. one of £p is PSD)

(i) p= h2q, where |6(g)| < 0o and h is a product of indefinite forms (this
product may be B in which case we agree that h =1).

Proof. First suppose (i) holds. By Lemma 5, ¢ cannot be indefinite, so ¢
is semi-definite and h® is PSD so p = h?q is semi-definite as required.
Conversely suppose p is PSD. Use induction on degp. If [&(p)] < oo,
then take h = 1 and p = ¢ as required by (ii). If |&(P)| = oo, then by
Lemma 9, p = h%q for some indefinite ». Here degq < degp, so by the
induction hypothesis, ¢ = p?¢*, giving p = (hp)?q*, where hyp is a product
of indefinite forms. O

Remark. The moral of Lemma 10 is that the study of PSD ternary forms
can be reduced, in some sense to the study of those ternary forms which
have only finitely many zeros: replace p by ¢.

We now give the

Proof of Theorem 8.2 (A). Let p € P36 and suppose |S(p)| > 10. We have
to prove that |S(p)| = oo and that p € I3 6, and indeed that p is a sum of
three squares (of cubics). Since p(6) = 10, so by Lemma 6, |&(p)| = oo ((i)
=> (ii)). The same lemma gives a factorization

p = h?q (h indefinite of degree at least 1, ¢ PSD).

If deg h =1, then deg ¢ = 4 i.e. ¢ € P3 4. Hence by Hilbert’s theorem ¢ is
a sum of three squares of quadratics:
g=fi+ 3+

giving p = (hf;)2+(hf2)? +(hf3)? as required. If deg h > 2, then deg ¢ < 2
i.e. ¢ is a ternary quadratic and so by completing squares

¢ = a sum of three squares of linear forms

=fi+h+8
p= (A1) + (Rf2)* + (Rfs)?,

as required. (I

We finally give the left over
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Proof of Theorem 8.4, (iii). Let p € P3,4. Suppose |G(p)| < oo, then by
Lemma 9
16(p)| < u(4) = max(4,3) = 4
as required.
To show that 4 is the best bound, we consider the ternary quartic
p(X,Y,2)= (X - 2)X(X - 22)* +(Y - 2))(Y - 22)*.
This has the following four zeros as required:
(1,1,1),(1,2,1),(2,1,1),(2,2,1).

Exercises

Let

(X1, X0) = X2 f(Xny -, Xn) 42X g(Xn, .., Xn) + A(X, . Xa)
be a quadratic polynomial in X with coefficients f,g,h which are polyno-
mials in X;,...,X,. Let D= fh— g% € R[X,,...,X,] be the discriminant
of p.
1. Show that as a polynomial in X, pis > 0 ifandonly if f >0and D >0
as polynomials in X,...,X,.
2. Suppose A(X1,...,Xn) € R[X;,...,X,] and let

qV; Xy, X)) =p(Y + M X1,.. ., Xn); X1,. .., Xn)

Show that the discriminant of ¢ with respect to Y is the same as the dis-
criminant of p with respect to X.

3. For a p as above, show that if p is SOS of polynomials then so is D. (If
p = Z(w; X +v;)?, ui,v; € R[Xy,..., X,], then f = Tu?, h = Tv?, g = Suju;;
so D = (Zu?)(Tv?) — (Zuv;)? = Z(uivj — ujvi)?).

4. Show that the converse of Exercise 3 is false (take p = W* + X?Y? +
Y222 4 22 X2 —4XY ZW).

5. Let p € P3¢ and suppose there exists a ternary cubic 2 such that
p — h? < 0. Show, along the following lines that p € ;3 ¢.

(i) Show that S(h) C &(p) (use 0 < p < h?)

(ii) Show that h is indefinite (use that h is a cubic)

(ii1) Show that |&(h)| = oo (use Lemma 5)

(iv) Now use Theorem 8.2 to show that p € I3 6 Deduce that if p € Py m
and p — h? < 0 for some n-ary 2-ic h, then p € T, . if

(a)y n=2,all m;
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(b) all n,m = 2;
(c)n=3,m=4;
(d)n=3,m=6.
(In all cases except the last p € I, ,, anyhow.)

6. Prove the converse of Exercise. 5, viz. that if p € P, m and p— A% <0
for some n-ary % -ic h, then p € I, i only in the four cases listed above, by
constructing counterexamples in all the other cases on the following lines:
(1) First let n,m > 4. For the form
Q=W*+X*Y?+Y?Z2? + 2°X* - 4XYZW
let N = max @ on the sphere X? +Y? 4+ Z2 + W2 = 1. Show that Q <
NX*+Y?*+Z*+W?)forall X,Y,Z,W ie. that
XmQ < [VNXEHX 4+ Y2 4+ 22 + WP
Since X™~1Q ¢ Tp m, we get an example of a form p for each n,m > 4 for
which p € Py m,p — h? < 0 for some h, but still p € T,, ,» as required.
(11) Now let n = 3,m > 8. For the form
S=XY24+Y*Z* + Z*X? - 3X?Y?2?
prove using an argument as above that
S(X,Y,Z) S M(X*+Y? 4+ Z?%)?* for some M > 0.
Then
Xm S < X™ (X2 4+ Y2 + 228
< [, /Mx?—‘l(X? + Y2 + Z2)]2;
but X™~65 ¢ Z3,m- This covers all cases.

The next few exercises are on Reznick’s result (Theorem 8.1). Let p =
a1 X" + a2 X" + a3 X"™ + a4 X™ € As36 have its minimal number of 4
terms, where by Lemma 1, (i) a1,a2,a3 > 0, (ii) ry,ry,r; are even vectors.
Furthermore, (iii) E(p) = {ry,re,r;} and (iv) r4 & E(p).

7. Prove, by following the steps given below, that ry lies strictly in the
interior of A = T(ry,rz,r3).

Suppose without loss of generality ry € the edge ry, rs.
(i) Show that we can find a vector b = (b, b2, b3) such that b-r; = b-r, =
b-ry=d>b-r;.
(ii) Put X; = ¢t (i = 1,2,3) and show that 0 < ¢t~ . p(t) =
z?aic,l-il C;"z c;‘a thriatberiztbaria—d
(ii1) Using (i), show by letting ¢ — oo that 0 < a1 c™ + a2c™ + aqc™ = ¢(c)
say. Thus ¢(X) is PSD.
(iv) Show that c(q), the cage of ¢, is 1-dimensional and hence by Lemma 3,
g(X) is SOS.
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(v) Using Lemma 1, show that a3 > 0,r; is even (= 2rj say) giving
a3 X" = (/a3 X*2)?. Deduce that p(X) = ¢(X) + a3 X" is a SOS giv-
ing a contradiction; hence r4 is not contained in any edge.

8. Show step by step, that by a suitable transformation of the type X; —

+X; (4 =1,2,3) (), we can make a4 < 0 (and of course leave a,, ay, az > 0).

Suppose a4 > 0.

(i) Prove that ry can not be even (otherwise all a;X™ (j = 1,2,3,4) are

squares, so p is a SOS; a contradiction).

(i) Show that by suitably choosing signs in (*), we can get what is required.
Now by Exercise 7, ry4 is in the interior of A and so it is a convex combi-

nation of ry,re,r3 :ry = ELI Ajr, ZA =1, 0<A; <1

9. Show that in the above, 0 < A; < 1 (use Exercise 7 and X); = 1).

10. Show that by a suitable substitution of the type X; — v;X; (j =
1,2,3), p(X) can be got in the form

p(X) =X 4+ 2 X"+ /\3er - aX“,
where rg = 31, X ; = 1,0 < ); < 1, = aqv™ (= aqvi*'vj*20;%):
(i) Choose v = vivpus to satisfy v™ = X;/e; (1 = 1,2,3). Show that
the three equations got from these by taking logs have a solution vy, vs,v;
(determinant of non-zero coefficients).
(ii) Show that the transformation X; — v;X; takes p(X1,X2,X3) to the
required form with o = a4v™.

Remark. If in addition to the requirement p € A; 6, we also demand that
p is extremal, then we can fully fix the choice of a. Indeed up to a change
of variables X; — v; X; ( = 1,2,3),

pP= /\1Xrl + /\QX" + AaXra bt Xr4,
where ry = E? A, 30 = 1,); > 0 (for details see [R4], Theorem 2).
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Theorems of Choi, Calderon and of Robinson
[C7], [C1], [RS]

A rather special class of quartics is the class of biquadratics
F(X],XQ,...,X,-"; Yl,Y2,-~- ,Y") =
Y ik XXk Yy,
i<k, p<q
where exactly two X’s and exactly two Y’s occur in each term. We may
ask Hilbert’s question of the class B(m,n) of all PSD biquadratic forms:
If F is PSD, must there exist bilinear forms
filX1,.. X Y, ., V) = D) XY,

such that F = ©f??

It was thought for some time (see Koga’s paper [K3]) that the answer to
this question is in the affirmative and indeed for m = 2 (or n = 2) Calderon
[C1] proved the result true. We shall give a proof of Calderon’s result; but
first let us ask what happens if m > 3, n > 3. It is enough to consider the
simplest case m = n = 3 (why?) and prove the following

Theorem 9.1 (Choi). There is a PSD biquadratic form that is not a SOS
of bilinear forms.

Proof. The following simple example was given by Choi [CT):
F(X1,X2, X3, Y1, Y2, Y3) = X7V + X7V + X3Y)
= 2X1 X2 Ye + X0 XaYoYa + X3 X1 YY) + 2(XPYE + X2YE + X2YE).
We shall show that (i) F' is PSD (ii) F is not a SOS.
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To prove (i), note that F' is invariant under the cyclic permutation of the
subscripts 1,2,3. Now since one of |X;]| < |X;|, |X2| < [ X3, [X3] < 1X)]
must hold, it suffices to show that F' > 0 whenever |X,| < |X2|. This can
be seen as follows: We have

F(X1, X2, X3; 11, Y2, Y3) = (X111 = XaY2 + XsY3)” + 2X]Y7
+ 2 X3VE + X3VE - 2X: X,Ya1h).
Here the first two terms are squares, so non-negative, while, using X7 > X?
since |X2| > { X\, the third is not less than
X2YE 4 X2VE - 2Xu X1 V¥ = (1Y — Xa17)?
as required.

To show that F is not a SOS, suppose to the contrary that F = L f?,
with f; bilinear in X’s, Y’s. Since the terms X?YZ, X2Y}?2, X2Y? are absent
in F, they are absent in each f2 i.e. X,Y3,X,Y1,X3Y, do not appear in
fi so fi(X1,X2,X3;¥1,Y2,Y3) involves the following terms, the underlined
ones being absent:

X1Y17X1Y.27X1}/3;X2YlaX2}31X2Y3;X3Y1’X3Y2»X3Y.3'
Write f; = ¢; + h; where ¢, involves X;1Y), X2Y2, X3Y; only and h; involves
the remaining terms. Then
F = Sg¢? + 25g;h; + Th?
which gives
X1V + X5Y9 + X3Y3 + 2(XTY) + X7Y + XYY)
—2(X1 Xo1h Yo + Xo XY Ys + X3 X, V3T,
=Y (@ X111 +aP XY, + a0 X, Y5)
+23 (@ X1 + 0P X,Y; +alV X3 ¥3) x
+ (P X1 Y + 0P X013 +8¥ Xo1h)
+ 36X Y2 + 6P XaYs + 6 X, 1)
Consider the middle term on the right hand side; no cross product in it
occurs on the left hand side, nor in the other two terms of the right hand
side, to cancel out. Hence L2¢;h; = 0. The first sum now gives the identity
> ol = XIV? + XPYE + X2YE - 2 X1 oW Ya + X X VaYs + X X1 VaYs)
since no term in the third sum occurs here. In this put X; =1 =Y, (for
all j,p) to give
Y @ +a® +aP)P=3-2.3=-3

which is impossible. O

Having done the simplest case n = m = 3, it is now an easy matter to
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cover all higher cases; we simply regard F(X,, X2, X3;Y1,Y2,Y3) as a form
in B(m,n) for any m > 3, n > 3 and show that it is not a SOS of bilinear
forms involving all the variables. For example let us show that f # a SOS of
fi(X1,X2, X3, X4;11,Y2,Y3). Suppose to the contrary that F' = L f? where

fi = a; Xu¥h + 5; X4Ys + i XaYs + gi( X1, X2, X511, Y2, Y3) (9.1)
Then

F = XI%(aihh + b)Yz +¢;Y3)2 + Zg?

+ 2X,Z(aVh + b)Yz + ¢:Ya) - gi(Xh, X2, X33 Y1, Y2,13).

Since X, does not appear on the left hand side, we see that, in particular
T(a;Yh + b;Y2 + ¢;Y3)? = 0. It follows that (a;Y; + b;Y2 + ¢;¥3) = 0 for
all 7 and all ¥3,Y,,Y; € R. Taking ¥, = Y3 =0, Y1 < 0, we get a; = 0,
and similarly b; = ¢; = 0 and so f; = g¢; (by (9.1)) i.e. F = Zg? giving a
contradiction to the case m =n = 3. O

Remark 1. The form F of Theorem 9.1 serves also as a 6-variable quartic
(6-ary, 4-ic) contained in Pg 4 — ¢ 4.

Remark 2. Putting X1 =Y1=r1, Xo=Yo =73, Xz =31, Y3 =321n
the F of Theorem 9.1, we get a PSD quaternary quartic

Fi(r1,7r2;81,82) = ry +ry — 2(rf + r%)slsg

+ 8252 4 2(r2s? +rish).
It is easy to verify directly that F} is not a SOS: Suppose
= Ef.'2 (fi(Tl,Tz,Sl,Sz)
are quadratic forms. As in the proof of Theorem 9.2, write f; = ¢; +h; where
gi involves only rf ,rZ s,s, and h; involves only ryry,7152,728,. Equating
coefficients gives
Tgi =1y +r12 = 2(r] +73)s182 + sis3+
a term in rir2 with a coefficient which is at most zero.

and this is negative when ry = r, = 3; = s, = 1 giving a contradiction. So
F e P4,4 -— E4y4.

Remark 3. Put Y] = X 1 Xs, Y3 = X, X;, V3 = XX, in the F of Theo-
rem 9.1 and we get a PSD ternary sextic
Fp(X1, X2, X3) = X{X] + X3 X2 + X3 X} + 6X7 X1 X3
—2X1 Xo Xa( X0 X7 + Xo X3 + Xa XP).
Again it is easy to verify that F is not a SOS: suppose F; = Lf?. As
above write f; = g; + h; where g; involves only X7 X, X2 X, X2X, and h;
involves only X, X;X3. Equating coefficients gives
Eg? = F2 - 6(X1X2X3)2,
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which is negative when X; = X; = X3 = 1, giving a contradiction. Thus
F, € Pays - 23,6-

We shall now prove Calderon’s theorem. In our notation m is the number
of X’s and n the number of Y’s. The degree is 4. Since m = 2 or n = 2,
we may suppose without loss of generality, the latter and call the two Y's s
and ¢ and write X = (X),...,X,;). Let the biquadratic form be then

Q(Xi1,--, Xm;s,t) = a(X, X)s? + b( X, X)st + o(X, X)t?,
where a(X, X), b(X, X), (X, X) are quadratic forms in X; in fact o(X, X")
is the bilinear form associated with the quadratic form a(X,X) so that

a(y,w) = %.(a(y +w,v + w) - a(y,v) — a(w, w)) (9.2)
We have the following

Theorem 9.2 (Calderon). Suppose @ is PSD; then there exzist
3m(m + 1)/2 linear forms ui(X), vi(X), 1 <1 < 3m(m + 1)/2, such that
3m(m+1)/2
Q= Y {u(X)s+u(Xn)".
=1

First note that the dimension of the linear space S of forms {u(X)s +
v(X)t}?, where u(X), v(X), linear forms in X is 3m(m + 1)/2: verify this
for say m = 1,2 and then use induction. Thus for m = 1 we have

(u(X)s + v(X)t)? = (aX1s + BX 1)
= o’ X%s? + 2 X1t? 4 208X st,

so that the required dimension is 3, a basis being X?s?, X2t?, X?Zst and
also 3m(m +1)/2=3 for m = 1.

For m = 2, the typical element of S is

(o1 X1 + a2 X3)s + (B X + B2 X)t)?
and expanding, we see that a basis for the space is
Xngst,X1232,X2232,X12t2,X22t2,X1X232,Xngtz,stt,ngt
so that the dimension is 9 as also is 3m(m + 1)}/2 for m = 2.

Let T' be the space (closed cone) of all PSD biquadratic forms. First we
shall show that the

extreme elements (rays) £(I') of I are all in S (9.3)
ie. ETycScT.
Then T is a convex combination of elements of £(T") and each element of
E(T) (being in S by (9.3)) is a linear combination of a basis of S as required.
To prove (9.3), we need the following

Lemma. Let Q(#0) €. Then there is a Q (£ 0) € S such that Q > Q,
(i.e. @ — @, is PSD).
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Proof. We use induction on m. For m = 1,X = X, = X say and
Q = Q(X;s,1) = aX2s? + X st + yX¢?

2 2
— 2 B day—fB° ,
=aX ((s+ 2at> + Y t ) .

Now being PSD, a > 0, 0 < 4ay — #? (= § say), so the above equals
2 2
(\/aXﬂ + ;%Xt) + (@Xt) . So suppose the result is proved when

the number of variables is at most m — 1 and let Q@ = as? + bst + c¢t? with
a, b, c having m variables. Being PSD, we see, on completing squares that

a(X,X) > 0,0(X,X) 2 0,4a(X, X) - o(X, X) > b*(X, X) (9-4)

Case 1: 6(Q) =0 1e Q@ =0if and only if X = 0,5 =¢ = 0. Then for
X1,...,Xm, s, t satisfying X2 +... + X2 = 1; s? +t? = 1, the continuous
function Q(X, s,1)/(u(X))*t* is bounded below by a positive number y say
(as in the first proof of Hilbert’s Theorem 6.1, main part) where u(X) is
any given linear functional in X, i.e.

Q > pu*(X)t? for X, s,t satisfying

Xi+...+XL=18+=1 (9.5)

and so this inequality holds for all X, s,¢, for let X = (X,,...,Xn),s,t be
any X, s,t; then the coordinates

( X Em ) > ! (9.6)
\/EXJ?’ ’\/EXJZ- P52 F 12 /32 12
satisfy (9.5) and so for the coordinates (9.6)

Q > pu*(X)E
Substituting (9.6) in this, we see that the denominators disappear and the
result holds for all X s, as required.

Case 2: |6(Q)| > 1 ie. Q@ has at least one non-trivial zero. By linear
substitution of the variables s,t we may assume that

Q({la{?a"',gmalao) =0.
Let R™ be the space of points X = (X1,...,X,,) and 2« be the one-
dimensional space spanned by e = (§,...,{m) so that A C R™, Let B
be a complement of A such that

c(e,Y)=0forall Y € B, (9.7

this is like choosing the orthogonal complement; instead of the condition of
orthogonality, we have (9.7). Then a(X,X) = e together with B span R™;
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i.e. each X in R™ may be written
X=2X+Y (Y €B, ) a scalar).
Then, by (9.2),
a(X, X) = a(re, Ae) + 2a(Ae,Y) + a(Y, Y)
= Ma(e, e) + 2Xa(e,Y) + a(Y, Y).
But Q(e,1,0) = 0 by the choice of our zero of @, i.e.
a(e,e) - 12 +b(e,e) 10+ cle,e) - 0> =0.

Hence a(e,e) = 0 and so a(X,X) = 2Xa(e,Y) + a(Y,,Y). But a is PSD
(by (7.9)) and unless a(e,Y ) = 0, this can be made negative by choosing A
suitably. Hence a(g,Y) = 0 and so

a(X,X) =a(¥,X) (9-8)
Similarly we have
X, X) =HY,Y)+ 2b(e, Y)\ + b(e,e)A°.

Here b(e,e) = 0 for taking ¥ =0 (i.e. X = Ae) in (9.4) gives

4a(e,e)N? - cle, e)A? > b (g, e)\*
ie 0> b%(e,e) so b(e,e) = 0. Thus

(X, X) = (X, Y) + 2b(e, Y)A. (9.9)
Also, using (9.7),

(X, X) = (Y, Y) + c(e,e) A2, (9.10)
Now use (9.8), (9.9), (9.10) to get:

Case 1: c(e,e) = 0; then
Q(-&7 S, t) = a(-&’ -&)32 + b(-&a -&)St + C(-)ivi)t2
= oY, Y)s* + (5(¥, X) + 2b(e, Y)M)st + o(X, X))t

which is linear in A and so can be made negative by a suitable choice of X -
a contradiction since @ is PSD. Thus in this case b(¢,Y) = 0 giving

QX, 5,1) = (Y, ¥)s? + b(¥, Y)st + (¥, Y )t
where Y € B has n—1 variables and so by the induction hypothesis @ > @,.

Case 2: c(e,e) # 0. First we verify that if p(A) = A2 + BA+Cisa
quadratic polynomial which is PSD, then

p(N) 2 4LA (%)2 (9.11)



116 Squares

Now p(A) > 0 gives as usual that A > 0, 4AC > B2. Then

p(A) = A [(A + %) +(4AC - Bz)/4A2]

= 4—’:—2 [(2A) - B)? + (4AC - B?)]

ap\’* 2 1 /3p\®
as required. So now

17))
Q(X,s,t) = a(¥,Y)s” + (b(Y,Y) + 2b(e, Y)A)st
+ (X, X) + c(e, £)A?)t?
= (c(e, e)t*)A? + (2b(e, Y )st)A
+ (a(¥, Y)s? + WY, Y)st + (X, Y)t%),

—) B

L
4A

a quadratic polynomial in A which is PSD. Applying (9.11) we get

Q=p(N) 2 o (2ele, A + 2He X)at)?

= ( ‘/C(le_e)(b(g, Y)s+ c(g,s)/\t))
_ (i(ﬁ) . ./—c@,gw)
=Q}

as required by the lemma.

Proof of Theorem 9.2. Suppose @ ¢ S, so @ is not a multiple of @, (of

the lemma) and

1 1
Q= E(Q—Q1)+§(Q+Q1)-

Here both $(Q — Q1) and 3(Q + Q1) are PSD since Q > Q) and neither
are multiples of @, otherwise Q would become a multiple of @,. Thus Q is
a convex combination of elements of ' which are not multiples of Q, so Q

18 not an extreme element of I'.

Another very interesting result due to Robinson [R8] is the following

Theorem 9.3.
(i) Let F(Xy,...,X.) be any real form of degree m = 2d; then

F(Xy,..., X))+ B(X¥+ ...+ X329
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is a SOS of real forms of degree d, when B i3 sufficiently large. Furthermore,
these forms may be chosen to be monomials or binomials (i.e. one- or two-
term forms).

In striking contrast to this is the next part:
(i1) Let F(Xy,...,Xn) be o form as in (i) which is PSD but not o« SOS;
then for B sufficiently small, the strictly positive definite form

F(X1,. ., Xa) + B(XH +.. + X2
is still not a SOS.

Proof. (i) We shall successively subtract squares of real two-term forms of
degree d from F' and show that, done suitably, there will remain only terms
of the type ey X2¢ + ... + o, X2?. Thus say if
F—(f2+f+. )= Xt . +a,X2
(f; monomials or binomials), then for sufficiently large 8 (> max|a;|) we
shall have
FHBXH+... +XM¥Wy=f14.. +ft
(B+a) X + ...+ (B + an)X2

and here each (8 + a;)X?¢ = (\/B + ;X{)? as required. To achieve this
subtracting process we proceed as follows:

First eliminate all terms in which any variable occurs to an odd power.
There will be an even number of such variables in any term (since the degree

of the form, being 2d, is even). If the term has the form c¢X; X X? (X a
product of powers of X,,..., X, ) then we may subtract

cX
(Xl + 72

so that ¢X; X»X? and X2X? and X?X? are added on.
If the term has the form ¢X; X, X3X4X?, then we subtract

)2x2,

and so on.

We are left with a form ® in which only even powers of the variables occur.
For such forms we shall prove by induction on n, that all terms involving
more than one variable can be removed by successively subtracting squares
of real binomials.

The case n = 1 is trivial: the form is aX?¢ and for S sufficiently large
(B + a should be positive) aX?? + BX7? = (VB + aX{)? as required.

So let n = 2 (this, we shall see, is the main case to consider; the others
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follow easily from it). We use the identities
(XT - XDXT - X3) = X! - 2XT X3 + X3
(X7 - X)X - X3) = X7 = X{ X3 — X[ Xz + X3
(X7 - XE)XT - X3) = X} — X7 XZ — X]X3 + X3

and so forth.

Here, on the left side, there is a second X? — X? factoring out of the
other bracket so that each term (on the left) is (X7 — XZ)? times a sum of
squares of monomials: Thus the polynomials on the right side are SOS of
binomials; e.g. the right side of the third equation equals:

(X2 — XTP(X3 + X2XE + X3)
= (X{ = X1X2)" + (X{ X2 - X1 X9)" + (X7X7 - X3)*
which is a SOS of two-term forms as desired.

We now multiply these right hand polynomials by large positive multiples
of powers of X?X? and subtract this from the form ®. We see that all cross
products X2"X2?72" (0 < r < d) i.e. all except X3¢ X2? in & with negative
coeflicients will gradually move towards positive coefficients. An example
will make this clearer: Say

®=3X%—TXSX7 - 12X{ X} —4X2XS - 5X5.
Then we subtract 19 times the third equation and 12 X2 X? times the first
equation from @ to get :
@ - 19((X7 - X7X3)" + (X7 X2 — X1 X3)" +(X3X] ~ X3)?)
—12XTX3((X] - X3)%)
=-16X? + 3XZX$ — 24X

(on the left side we use the left side of the corresponding equation and on
the right, the right side). In doing this remember that if d is even (i.e. 4|m)
then we use the first, third, fifth, ... identities in turn, while if d is odd, use
the second, fourth, sixth, ... identities. Eventually all coefficients will be
made positive except for those of X3¢, X2¢ (in the above example we did this
in a single step). These positive terms may now be removed by subtracting
squares of monomials, so that only multiples of X2 and X?¢ remain. Thus
in the above example we get: ®—19 (the left side of third identity) —12XZX2
(the left side of first identity) —(v/3X1X3)? = —16X? —24X%. Then adding
alarge multiple, say 3, of X?¢+X2¢ to ® and taking the rest to the right side
will do what is required. In the above example 8 = 24 gives &+ B(X? + X3§)
to be a sum of four binomials and two monomials.

Now suppose n > 2 and that the possibility of removing all terms in-
volving more than one variable by subtracting squares of binomials and
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monomials is known for any smaller number of variables. Consider the
terms of &(X;,...,X,) involving various powers of

X . X2 X4 X?k X2d
i Xo, Xoy L X5 X
Take a general one X 2F. Applying the inductive hypothesis for n — 1 vari-
ables we see that all of these terms can be eliminated except for
X2k x2k | x2-2k X2k (f=0,1,...,d)
Do this for all ¥ = 0,1,...,d and then apply the 2 variable process to
eliminate terms involving both X; and X,, (I = 1,2,...,n — 1). The only
remaining terms will now be multiples of X?¢,..., X2¢ as required. This
completes the proof of (i). O

(i1) In the notation of Chapter 6, we see that polynomials which are not
SOS of real polynomials will form an open set in V - being the complement
of C, which is a closed set. This means that if F(X;,...,X,) is not a SOS,
then the same will be true if we modify the coeflicients of F slightly.
Exactly similar reasoning works for forms, except that the coeflicient
space V for forms of degree m = 2d in n variables is (“:_"l_ l) - dimensional.
Thus if F(X,,...,X.) is a form of degree m = 2d, which is PSD but
not SOS, then for § sufficiently small, the strictly positive definite form
F(X1,...,Xn)+ B(X? +...,X2) will still not be a SOS of real forms.

a

Some very interesting questions arise out of this theorem. Let us be
explicit and consider the following example:

Let ¢,(X,Y,Z2,W) = ¢(X,Y,Z,W) + aX?W? (a > 0) where ¢ is the
quaternary quartic of our basic examples of Chapter 6. Since ¢ & I, 4 we
see that ¢, & I, 4 for sufficiently small a. On the other hand we have

foa =W+ XY+ 22 X2+ (YZ = 2XW) + (a — )XW,
80 o € T4 ,4 for a > 4. Allowing o to vary from 0 to oo, we see that there
must exist a minimum value ag of @, o < 4, for which ¢o, € Z44. What
is the precise value of this ag?

Extending the method of proof of Chapter 6 we can in fact show that
ag = 4. For details, see [C9].

Questions of this kind can be posed for any of the forms we have come
across before. It can, at times, become quite difficult to calculate the exact
place at which the turning point appears; for example let

S(X,Y,Z2)=X°+Y®*+Z° - (XY + X*Z? + Y*X?*+
Y4Z? + Z'X? + 2Y?) + 3X?Y?Z2
Then we know (see later in this chapter) that S is PSD but not a SOS. By
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Robinson’s theorem, there exists a B such that S+ (X% + Y%+ Z%)is a

SOS if and only if 8 > 8. What is the exact value of 85? In [R8], Robinson
gave the estimate

05225—-,/6<F <1
In [C11], Choi, Lam and Reznick finally prove that in fact 8, = 1/8.
One can also consider natural extensions of Hilbert’s question (6.1) to
various special classes of forms as for example the biquadratics considered

at the beginning of this chapter: As other obvious examples one could
consider the following classes of forms:

1. = {symmetric forms};

2. & = {even forms}, i.e. in which all the intervening exponents are
evern;

3. K¢ = {forms in which all the intervening exponents are < a fixed
integer e};

4. I = {forms f||6(f)| = oo}

Theorem 8.2 deals with class 4 above. If J denotes any one of the above
four families, we can replace Hilbert’s question (6.1) by the following more
specialized one

Q(J) : For what pairs (n,m) will T N Prpm C Zpm? (9.12)

By Hilbert’s theorem, the answer is always “yes” if either m = 2 or n = 2,
so in future let n > 3, m > 4. Theorem 8.2 says the answer is yes if
J = TI. We shall briefly discuss the solution to Q(S). Actually S is the first
obvious example that comes to ones mind. This is an account of the fact
that although the examples of forms given to prove (iv) of Theorem 6.1 have
certain symmetries in their structure, they are not fully symmetric and the
proofs of their not being in L, ,, seem to have depended, to some extent,
on their lack of symmetry. So it may be that a symmetric form in P3¢ (or
in Py 4) will always lie in L3¢ (respectively ¥4 4). We have the following
result of which we shall only sketch a proof. For details of references the
reader is referred to [C8].

Theorem 9.4. SNPpp CZum iff n =2, allm orm =2, all n or
(n,m) = (3,4) i.e. the answer to (9.12) for J = S 1s given by the same
chart as that given in the remarks after the statement of Theorem 6.1.

To prove this we must find symmetric forms € P, ,, — £, m for all pairs
(n,4) for n > 4 and for the pair (3,6), for once such F’s are found, we can
construct symmetric forms of higher degree by taking (X; + ... + X,)?'F,
which is easily seen to be in Py mi2i — Ln,m+2i- Unfortunately to construct
a symmetric form € P, m — X m, the construction of a symmetric form
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Fy4 € Py — L44 will not do, for, this form, although in Py 4 forn > 4 is
not symmetric as a form of P, 4(n > 4). Thus a different F, 4 € (Pr 4NS)—
I, 4(n > 4) is required for each n and it needs a considerable effort to get
it. We shall therefore only record the special form Fy 4 € (P44 NS) — X4 4
viz.
XY+ X222+ XPW? + Y222 + YIW? 4+ Z22W? — 2XY ZW
+XYZ+ XYW+ X ZW + Y ZX + Y XW + Y WZ
+ZPXY + YW + WX + WXY + WY Z + W ZX
=ZX?Y?+ EX?*YZ - 2XYZW (full symmetric sums).

As aform F3 ¢ € (P3N S) — L3¢ we have the beautiful even symmetric
ternary sextic constructed by Robinson:

R(X,Y,Z)=X®+Y°® + 25 + 3X?Y?2?
— (XY +YIXE+ Y22 4 20V + 20 X 4+ X2

Proof. We first note that R is PSD. To see this write
r=X% y=Y? 2=2%
Then
R=z*+y* +2° — (e%y + v%z + vz + 2%y
+ 2%z + 222) + 3zyz
=z(y—2)(z - 2) +(z+y—z)(z —y)
which is non-negative if 0 < z < y < z and so non-negative for 0 < z,0 <
¥,0 < z by symmetry. But z,y, z are all indeed non-negative, being equal
to X2,Y?,Z2.
To see that R ¢ 3 ¢, suppose to the contrary that
R=12¢] (degg;=3)

say
4i(X,Y,2) =a;X° + b; XY + ¢;X*Z + d; XY? + ¢;X Z*
+%XYZ + pi(Y,Z)
=X(a;X? +d;Y? +¢;2% + ;Y 2)
+b6;X%Y +¢;X*Z + p;(Y, 2)
=Xf;+49;
say, where f;, g; involve only powers of X that are 0 or 2. Then
R=X(X*f] +2Xf;9; + g7). (9.13)
Comparing coefficients of X® we get
1 =Xa} = £f}(1,0,0) (9.14)

Further, the left side of (9.13) is even in X, hence the coefficients of the odd
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powers of X on the right side must be zero i.e. £2X f;g; = 0; the remaining
terms being squares give
R(X,Y,2Z) > X?f} (for each j) (9.15)
Plugging in Y = +X in this gives
R(X,+X,2)=Z*(2* — X*)?
> Xsz(X, tX,7)
= Xz((a_,' + dj)X2 +v;XZ + Csz)Z.

Thus Z%(Z% — X?)? > X?*((a; + d;)X? £ v;XZ + €;Z?)* and this is
impossible: take Z small and the left side can be made arbitrarily small (on
keeping X constant but large enough to ensure that the right side is, say,
at least 1). The only way out is f;(X,+X,Z) =0, i.e. f;j(X,Y,Z) vanishes
when Y = +X. It follows that X +Y and X —Y are both factors of f; and
%)

X -Y?|f;.
Similarly plugging in Z = +X (or by symmetry) we see that
X - 2°|f;.

Thus (X? — Y?2)(X? — Z?)|f;. But f; is quadratic, so this is only possible
if f; = 0 for all §; so f;(1,0,0) = 0 for all j giving a contradiction to (9.14).
(]

Remark. One can prove likewise that the symmetric form
H,(X,Y,Z)= X*™(X? -Y*)(X? - Z)+Y™*(V? - Z")(YV* - X?)
+2*(2° - X*)(Z2" -Y?)
=S X N xwAy? 4 ) ey 2
3 6 3

€ Pa2u+s — L3,20+4;
see [C9], Proposition 2.7. So much for symmetric forms.

There are so many other interesting topics we have not even touched on;
for example we have said nothing concrete about extremal forms. In gen-
eral, to determine the set £(P, ) of all the extremal PSD forms is difficult.
Even to tell, for a given form f € Py m, whether or not f belongs to £(Pn, m)
is, in general difficult. In [C9], Choi, Lam and Reznick give excellent illus-
trations of this problem. In [C11], these three authors deal with all the
even symmetric sextics. The paper provides a very good concrete example
of a typical situation. A lot more work is being done on this topic and for
further details, the reader may consult the bibliography given at the end
viz. [C10], [C13], [C14], [C16]. For those who desire a basic knowledge of
algebra behind all this, the best reference is [L3].
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Exercises

Let B#(Xl’X2’X3’Yl’Y2vY3) = BM(X’Y) = X12Y12 + ‘)(22Y22 + ng?sz +
,u(X12Y22 + X%}faz + nglz) - 2(X1X2)/1Y2 + X2 XYY + X3X1Y3Y1), SO
that for u = 2 we get the counterexample of Choi, discussed in Theorem
9.1: B, € Bg4 but is not a SOS of bilinear forms. We wish to show that
B; is PSD and indeed extremal among all PSD biquadratic forms. This is
done in Exercises 1- 5 below.

1. Let a,b,c € R. Prove that a® + b% 4 ¢* + 3(abc)?/® > 2(ab + bc + ca).
Suffice to prove this for a,b,¢ > 0 and by symmetry for a,b > c. Apply the
arithmetic-geometric mean inequality to c?, (abc)?/3, (abc)?/?, (abc)?/? to get
c?+3(abc)?/® > 4cvab. So a?+b% +c? +3(abc)?/* —2(ab+be+ca) > (a—b) +
Vot a{at e = (a8~ 2e A B = (Ja VDl B3] 2 0
2. Show that B, is PSD. (Apply the arithmetic-geometric mean inequality
to X2Y?, X2Y?, X2Y;? and Exercise 1 to a = X1Y1,b = X2Y3,¢c = X3Y3
then add).

3. Prove that the substitutions
(1) X1>X2>X3;Yl>},27}/3_’YZ’ZXaXY:X)Y,Z
(ii) X11X2aX3;YlaY'2aY'3_’X>W)Z’}/’Z)W
take By to S(X,Y, Z)and Q(X,Y, Z, W) respectively (see Chapter 6). Prove
also that By(Z,X,W,W,Y,Z) = By(W, Z,X,Z,W,Y) = Q(X,Y,Z,W).
4. Let f(X,,X2,X3) be a quadratic form such that (i) f(X;,B2,v3) =0,
(i) f(ay,X2,73) = 0, (iil) f(of,B5,X3) = 0. Show that f = 0. (Hint:
()= 13 X2 — B2 Xs|f, (i1)= 73 X1 — a1 X3l f, (ii1)=> B3 X1 — a} X2|f. Since f
is of degree 2, f(X,,Y;,Y2) =0.
5. Prove by the following procedure that B; is extremal as a PSD bi-
quadratic:
(1) I Bi(X,Y) > F(X,Y) 2 0, then Q@ > By(X,W,2,Y,Z,W) >

F(X,W,Z,Y,Z,W) > 0; so since @ is extremal we see that

F(X,W,Z2,Y,Z,W) = \Q
and similarly
F(Z,X,WW)Y,Z)=XQ and F(W,Z,X,Z,W,Y) = X3Q.

(ii) Comparing coefficients of X?Y? Y222 Z2W?, show that A\, = A,

A3 = A say.
(iii) Now take ¥7,Y2,Y; to be fixed reals and let

f(X1,X3,X3) = (F — AB1)(X1, X2, X3; 11, Y2, Vs).
Show, using Exercise 3 that
f(X11X3aY'3aY'2) = Oyf()/:hX?,}/l) = O,f(y'%y'lyxii) =0
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(iv) Using Exercise 4, show that f =0
(v) Conclude, by continuity, that F = AB; i.e. B; is extremal among
biquadratic forms.

The next four exercises are from Robinson’s comments on Motzkin’s
ternary sextic [R8].

6. Let P(X;,...,X,) be a polynomial of degree less than 2n and let

F(X1,...,Xn)= XX} X2 P(Xy,...,Xa) + 1.
Suppose F is a SOS of m polynomials:

F=2{"f1?(X1,...,X,.) (*)
Show step by step, that P is then a SOS of m polynomials.
(i) Prove that f; = X1 Xy --- Xy hj(Xq,...,Xn) +¢j (¢ ER) (put X1 =0
in (*) to get 1 = Ef}(l,X;,... ,Xn), giving a contradiction to the formal
reality of R, unless f; = constant. Thus each term of f;, except the constant
term, is divisible by X, and similarly by X,,...,X.).
Note that deg P,deg f; < 2n,deg F < 4n,degh; < n.

(ii) Substituting (i) in (*) show that

F=X}.. XIZTh?+2X, ... XaE7cjh; + E7ch.
Show that the middle term on the right is identically 0 (its degree is less

than n so it can contribute terms absent in F).
Deduce that P(X,,...,X,) is a SOS of m real polynomials

7. Show that Exercise 6 is false if deg P = 2n (take P = X7 ... X2 - 2).

8. Let n > 2 and take P = X?... X2 — a. Prove that the correspond-
ing F of Exercise 6 is PSD if « = n+ 1 and so alsofor all &« < n +1
(apply the arithmetic-geometric mean inequality to the n + 1 quantites
X2,...,X2,1/X}... X2, giving

nil (X12+---+X,2,+ﬁ> >1,
and this just says that F is PSD fora =n+1.

Remark. Here P is indefinite, so not a SOS, but F is PSD. If F is a SOS,
then by Exercise 6, so is P, hence F is not a SOS but is PSD.
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The (r,s,n)-identities and the theorem of
Hurwitz-Radon (1922-3)

The aim of this chapter is to look at the second of the three generalizations
of the identity (1.4):
(XZ4.. .+ X2V +...,Y)=22+...,22
We have already dealt with the first generalization viz. in which we al-
lowed the Zi to belong to the field K(X,,...,X,,Y1,...,X,) and real-
ized that for each power n = 2™ of 2, we have such an identity with
Zy € K(X1,...,Xa,1,...,Y,) and indeed that the Z; may be chosen
linear in the Y; with coefficients in K(X,,...,X,).
Thus we consider now the identity

(XP+... + XDV +... +YH) =22 +... + 22 (10.1)
where we of course restrict the Z to be bilinear in the X; and the Y; with
coeflicients in K (we suppose char K # 2).

Definition 10.1. Call the triple (r,s,n) admissible over K if (10.1) holds
with the Z; bilinear functions of the X; and the Y; with coefficients in K.

Our main problem is to determine what triples (r,s,n) are admissible.
Obviously (r, s,rs) is trivially admissible so that what we really want is the
most economical n for which (r,s,n) is admissible for the given pair r,s.
With this in view we have the

Definition 10.2. Denote by r,s (or rather r xx s) the least n for which
(r,s,n) is admissible over K.
We have the trivial bounds

max(r,s) <rus <78,
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It is not easy to determine r,s, even for small values of r, s and indeed the
main problem of determining exactly what triples (r, s,n) are admissible is
far from being solved.

Alternatively we could ask, for given s,n the maximum value of r for
which (r, s,n) is admissible; and this is the approach we adapt here. Our
aim is to describe the special case s = n solved by Radon [R2] in 1922 for
the field R of real numbers and simultaneously by Hurwitz [H6], published
posthumously in 1923, for the field C of complex numbers. Various authors
have since dealt with other fields (see the references). Actually Radon’s
proof would work for all real closed fields (R being such a field) where as
Hurwitz’s proof would work for all algebraically closed fields (C being such a
field). It would not be worth our while to give all the details here. Basically
it is a game played with matrices and we give here, as a sample, the typical
case of the real number field treated by Radon. We have been, no doubt,
rather partial towards real numbers; the presence of Chapters 4-9 testifies
to this. After all we do live in a real world. Some examples are now called
for before we proceed with Radon’s solution to Hurwitz’s problem.

Examples.

(i) (m,n,n) is admissible over R, indeed over any field K, char K # 2, iff
n=1,2,4,8. Thus is Hurwitz’s theorem (Theorem 1.1).

(i) (1,n,n), and indeed (r, s,rs), is admissible for all n,r, s over any field
K.

(i) If char K = 2, then r *x s = 1 for all r, s for then a? + b2 = (a + b)%.

(iv) 88 =8 for max(8,8) < 8*8 < 8. Similarly 4x4 =4 and 2x2=2.

(v) The 16-square problem: Before Hurwitz, studies about the (r,s,n)-
identites (10.1) were exclusively restricted to the polynomial ring
I[X,,...,X,1,...,Y,] over Z. One then speaks of the (r,s,n)z-
identities. It has recently been confirmed that 16 *z 16 = 32, thereby
completing the solution of the so-called 16-square problem in the in-
teger coefficient case (see [Y2]). However, the integer v = 16 xg 16
is not known to date. Various methods developed by K. Y. Lam and
J. Adem narrow down the range of v to 23 < v < 32. The values
23,24 were subsequently ruled out by Lam and Yuzvinski. By going
more deeply into the geometry of sums of square formulae and using
sophisticated algebraic topology, it has now been established by Lam
and Yiu that 29 < v < 32.

It is trivial to see that v < 32; indeed

(f:ﬁ) (i)’f) = (iX§+i::X}> (iyf2+§:yj2>
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which is a sum of 32 squares, using the 8-square identity four times.
(vi) Amongst small values of r,s,n, even (10,11,25) is not known to be
admissible or otherwise.

Definition 10.3. For any positive integer n, define the so-called Radon
function p(n) as follows:
Write n = 2™ - u (u odd); then

2m+1 0
_ ) 2m . )1
p(n) = om according as m = 0 (modulo 4).
2m 4 2 3
Equivalently write m =4a + b, 0 < b < 3; then

p(n) = 8a + 2°.

We now have the following

Theorem 10.1. (Radon, Hurwitz - 1922, 1923) The triple (r,n,n)
is admissible over the field of real numbers (indeed over any field K, char

K #2)iffr < p(n).
For the proof we convert the general identity (10.1) into a system of
matrix equations (cf. Chapter 1). Write

Xi Y; Z,
Xr Y, Zn

then Z = AY, where A is an n X s matrix whose entries are bilinear forms
in the X; with coefficients in K. Then (10.1) becomes:

£ Z
(X12+...+X,2)(Y1,...,Y,)( : ) =(Z1,...,Z,,)( : ) =Y'A'AY
Y, Zn

Y’ ({;Xz} I, —A’A) Y =0.

A'A= (Z X,?) I,.

=1

le.
It follows that

Now write A = 4, X, +...+ A, X, where each A; is an n X s matrix over
K. This then gives the following system of equations called the Hurwitz
matrix equations:

Aidi=1, 1<i<r) } (10.2)

A4+ AAi=0 (1S6,5<r i#])
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Conversely if there are r matrices 4,,..., A, of type n x s satisfying (10.2),
then (r, s,n) is admissible over K.

Now let s = n and K = R (the Radon case) so that the A; become n x n
real matrices and the system (10.2) becomes

AiA; =1, 1<i<r).
AlAj+ AjA; =0 (§#4, 1<4, j<r).

Notice that we may suppose that r > 1 since for r = 1 the second equation
above is vacuous and as we know (1, n,n) is trivially admissible.

Step 1. Let B; = ALA; (1 =1,2,...,7r—1). The B’s are easily checked to
satisfy (see Chapter 1)
(1) B;+B.=0

(2) Bl=-I, 1<4, j<r-1 (10.3)
(3) BB, +B;B;=0(i #j)
(1) implies |B;| = —|B;| = (-=1)"|Bi| and since |B;| # 0 (by (2)) it follows

that n is even. Thus if n is odd, the set of matrices B; is empty i.e. r—1 =0
i.e. r = 1li.e. thelargest r for which the triple (r,n,n) (n odd) is admissible,
s 1.

So we shall suppose in future that n is even.

Step 2. By the corollary to Proposition 2 in Appendix 1, find a real
orthogonal matrix O such that B,_; = OC,_,0"' where

(0 Lp
C’—l_(—fn/z 0 )

Put C; = OB;0' (i = 1,2,...,7r — 2). The C1,C,,...,Cr—2,C,—1 satisfy
the following system of equations got directly from (10.3):
(1) Ci+C;=0

(2) Cl=-I, (1<i,j<r-1) (10.4)
(3) CiCi+CiCi =0 (i #j)
Write, for1<i<r-2, C; = (—TS." I/SI'}>’ where R;, S;, W, are n/2xn/2

matrices; note also that since the C; are skew-symmetric, so are R;, W;. Put
J=r—1in(3)of (104) and let 1 <: <r — 2. We get

R.'I S; 0 Lo n 0 L./2 R:‘, S; -0
—S" Wi —I"/2 0 —I"/2 0 —‘S'- W,'

-S; R; =-S5 Wi\ _
(5 %)+ (R %)=

In other words, W; + Ri =0 and S; + 5, =0 (i.e. S; is skew-symmetric).

or
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Now put D; = R; +15; (1 = 1,2,...,r — 2,1 = y/—1). The D, are
skew-symmetric since the R; and S; are. Then

.- (B Si (B 5
o (8 S)(5 %)
_ R,‘Rj + S,‘Sj R,‘Sj - S,‘RJ'
- S.'R_,‘ - R,‘S_,‘ S,‘Sj + R.‘RJ'
_ (R(D:D;) -I(D;D;)
~ \Z(DiD;) R(D:Dy)
since D;D; = RiR; + 5:S; + 1(R:S; ~ SiR;) = R(D:D;) +1I(D;D;). Then
(10.4) becomes
(1) Di+D;=0
(2) DiDi=-I,p, 1<4, j<r—-2 (10.5)
(3) D:D;+D;D; =0 (i #j)
By (2) of (10.5) we get |D;| |D;| = (=1)"/? i.e.
|det (D;)|* = (—1)"/2.
Here since |det D;| is a real number, |det D;[* > 0. It follows that n/2 is
even. Thus for n/2 odd (i.e. for 2 || n), the set of matrices D;(1 < i < r—2)

is empty i.e. r = 2. Thus the largest r for which the triple (r,n,n) (2 || »)
is admissible is 2. Indeed, writing n = 2m we have

(XT+ XD +Y7 4o+ Yo + 1)
= (XT+ XD+ V) + (XT+ XV + Y+
=3+ 3+ Z3+ 25+ A+ 2y + Ly
by the two-square identity. So (2,n,n) is admisible when 2 || n, and 2 is the

largest such integer as required.
In future, therefore, we shall suppose that n/2 is even (i.e. that 4|n).

Step 3. Find a (complex) unitary matrix U (i.e. U satisfies Ul = I} such
that D,_y = UE,_,U’, where

{0 L
Er_2—(—-’n/4 0)

and put E; = U"'D;U (i = 1,2,...,7—3). (This is possible by the corollary
to Proposition 4 Appendix 1.) The E,, E,,..., E,_; satisfy
(1 E,+E. =0
(2) EE;=-I,/2 1<i,j<r—2 (10.6)
(3) E:E;+E;Ei=0(#3j)
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as may be easily checked from (10.5). Now write

E; = (g: %:) (all n/4 x n/4 blocks).

Then by (3) of (10.6), with j =r — 2, we have, for 1 <i<r -3,
oo (P Qi 0 I\, (0 I P Q
T\ S R -1 0 -I 0 S: R;
_ (9 B, Si R
S \-Ri S -P; Q)
It follows that —Q; + S; =0, P; + R; = 0. Hence
(5 @
Ei= (Q.‘ _Pi> '
Furthermore, by (1) of (10.6), we find:
P,+P =0
e (10.7)
Qi+Q;=0
Now decompose P;, @); into real and imaginary parts:
Pi=-T" -1
Qi =-T® +18..

By (10.7), we see that the S; are symmetric, while the T,-(l),T,-a),T'.(a) are
all skew-symmetric.
We now enter into quaternion matrices. Put

Fi=8+ elT,-(l) + 6271'-(2) + €3T'-(3) (i=12,...,r=3);
these are n/4 x n/4 matrices. Then F; is given by
F;=S;- €1T.-(1) - €2T,-(2) - €3T.~(3)
=S+ aT® + 6T + &1
= F!.
Now we have
FiF; = (Si + T + T + & T®)x

(Sj+ €1T}l) + EQTJ(?) + €3T}3))
(55, T g7 10r)
+ a@S; + 5TM + TOTO _TOT®)
+ 52(1‘.‘(2)51‘ + S;T}Z) + T'(3)TJ(1) _ T.'(I)Tfs))
+ (T8 + ST+ TVTY - 10T, (108)

2 __ 2 _ .2 _ — — _ —
€] =€ =€ = —1, €162 = —€2€] = €3, €263 = —€362 = €

€3€1 = —€1€3 = €3.
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Then
— P, Q; P, Q )
EE, == 23 J z
J (Ql _Pl'> (QJ —PJ
L(Fmrae BR-an) (1 x)
QtPJ_PIQJ Qin"'PlPJ -N M
say. We have
M = PP; + Q:Q;
= (=58 + TOT® + 7T + TOT®)
+ 7'(_SI'TJ'(3) _ Ti(s)sj _ T,-(I)TJ(Z) + T,-(Z)Tj(l))
and

N =PQ; - Q:P;
= (=ST? —T®s; - TOT® £ TOTO
+ (ST + TS + TOTS - TOTR) (10.9)
Comparing (10.8) and (10.9) we get

= —(FiFj)o — (FiFy)s —(FiFj)2 + z(F.-F-)l)
E,E; = (FFy ! J J 10.10
= (G REniRR,) 000
where ¢ = qo + €141 + €292 + €3¢3 for any quaternion gq.
It is now easy to check that the F’s satisfy:
(1) F=TF,
(2) Fl=1I.4 1<i,5<1,2,...,r =3 (10.11)

(8) FF+FF=0(i#))
Indeed (1) has already been verified. For (3), we have (for i # 3)
0= E;E; + E;E; (by (3) of (10.6))
- (-(E'Fj + FiFi)o  —(EFj + FjFi)s, Cfc-)
"\ (FiF; + F;F): +uF.F; + F;F), ete.
Hence, see (10.10),
—(FiF;+ FjFi)o=0, —(F;F; + F;F;)3 =0
— (FiFj + F;Fi); = 0, —(FiFj + F;F;), = 0,
i.e. F;F; + F;F; =0 as all four components are zero.
Finally we prove (2). By (2) of (10.6) we have

(a2 ) =tun=EBem ((E D )

so (F})y = I, ;4 and (F?)12,3 are all =0 i.e. F?= I, ;4 as required.

Step 4. By the corollary to Proposition 5 in Appendix 1, find a quaternion
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matrix O (the so-called symplectic matriz ) such that F._3 = O G,_aﬁ',

where 00' = n/4 and
(1. 0
Gr—3 - ( 0 I%—a,) )

where a is some non-negative integer depending on F,_j.
Put F; = 0G0 (i = 1,2,...,r —4). Now check that the G; (i =
1,2,...,r — 3) satisfy
(1)  Gi=G
(2) Gi=1I 1<4,j<1,2,...,r=3; (10.12)
() GG+ G;Gi=0(i #j)
this is seen to follow directly from (10.11) and the definition of the G’s.

Now write
G = (%’ ?’) say (i =1,2,...,r —4)

where the blocks have type compatible with (10.12); thus for the product
GiG; to exist we must have, for example, the number of columns of @;
equal to the number of rows of Q;, so Q; is a square matrix, and so on.
Now (1) of (10.12) gives @; = Q., $i=75, P;,=P, Puttingj =r—3in
(3) of (10.12) we get, for 1 <i < r — 4,

Qi P\ (L 0 I, 0 Q: P\ _
(?I‘ 5">(° ‘Iﬂ‘-a>+(0 -f%—a> (—?2 S.->—0

_(Qi P
Gi= (?’,. s )
using the relations got from (1) of (10.12) i.e.
Qi —P Qi P\ _
(?ﬁ —5) -7, -s5)="
Thus @; =0, S; = 0 and it follows that G; is of the form

(?9{ I(;") (i=1,2,...,r —4)

since

where the P; are a x (% — a) matrices.
Further by (2) of (10.12) we find
PP,=1I, PP,=1Is_,
i.e. the matrix equation P;X =Y has a solution for an arbitrary choice of
Y viz. X = ﬁliY. Being a quaternion matrix, this gives 4a linear equations
over R and the unknowns are 4(n/4 — a) in number. Hence 4a < 4% —a).
But now reversing the roles of XY i.e. writing the equation P, X =Y
as ﬁ:Y = X, we see that this latter equation has a solution in ¥ (viz.
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Y = P;X) for an arbitrary choice of X. Hence 4(§ — @) < 4a. It follows
that 4a = 4(% —a) i.e. that 8a = n, so 8|n or % is even. Thus if n/4 is odd,
equation (3) of (10.12) has only one element in it i.e. r —3 =1lorr = 4.

Thus the largest r for which the triple (r,n,n) (4 || n) is admissible is 4.
Indeed, writing n = 4m (m odd) we have:
A XE XDV YA Y L a +YE)
=(XI+.. . +XHY2+...+YH+...
+(XT o XD (Vimog + o+ Vi)

=(Z ... +ZH+ .. .+ (Zamz + ...+ Z2,),
by the 4-square identity.- Thus (4,n,n) is admissible when 4 || n and 4 is
the largest r such that (r,n,n) is admissible.

In future therefore, we shall suppose that n/4 is even i.e. that 8|n. Let
n = 8b and we examine the G;’s. We have

Gi= (-}21 f;’) (i=12,...,r—4)
where all these are quaternion matrices and the P; have type § x §. These
satisfy
(1) PI-FII = in/s
(2)  PiPi=l.s
- =/ . .
(3) PP, +PP;=0 (i #j)
4) PP+PPi=0 (i#))
Here (1), (2) have already been checked earlier; for (3), (4) use (3) of (10.12).
Now compare (2), (4) of (10.13) with (10.2). They are similar, to say the
least, so that the determination of these P; should follow the same lines as

that of the A; from the equations (10.2). This is just what we now propose
to do in our next step:

1<i,j<r—4 (10.13)

Step 5. (cf. Step1). Put @ = P!, P; (i =1,2,...,r —5). Then the Q;
satisfy

(1) Qi+Qi=0

() QiQ; =Q;Q: (¢ #))
This easy to check (cf. Step 1).

Step 6. (cf. Step 2). By the corollary to Proposition 6 in Appendix 1, we
find a quaternion matrix O such that

Qr—-5 = ORr—5—O_I
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where 00 = I./s, Rr—s = e11,/s and define R; (i = 1,2,...,r — 6) by
Qi= OR.O'. These R; (i=1,2,...,r — 6,r — 5) satisfy
(1) Ri+R;=0
(2) Rl=-Is 1<4,j<r—5 (10.15)
(3) RiR;+R;Ri=0(i#J)

This is a routine and we leave it to the reader to check.
Now write

Ri=59 1+ 65" +65® 4+ 65
(i=1,2,...,r—6)
and take j = r — 5 in (3) of (10.15). We find
(57 + a5 + a5 + a5 (@l
+ (611)(5'(0) + 615'(1) + 625'(2) + 635,(3)) =0

e,-SEO) - .5',(1) - 635.(2) + 625}3)
+e80 — 5 4 €53 — 6,58 = .

In other words 2(61550) - SEI)) =0or S}o) = .5',(1) =0,s0 R; = 625§2) +
635'(3). Furthermore by (1) of (10.15) we find

625'(2) + 635.(3) - 625.(2)1 - 635'(3)1 =0

ie. .5',(2) = .5',(2)1,5,(3) = .5',(3)’ or S§2), .5"(3) are real symmetric matrices.
Now put T; = .5',(2) +1S§3) (1 =1,2,...,r —6). It is not difficult to check
that the T; satisfy
1) =T
(2) TTi=I.s (1<i,j<r—6) (10.16)
(3) TT;i+TTi=0(i #5)
Indeed we have
RiR; = (&5 + &S7)(@5" + &5)
= (5757 1+ 55 — (5P 5P — 5P 5y
= R(T.T;) — e« (T:T5),
for
TT; = (S +157) (8 —15™)
= (ST 8P 4 5B 5P) 4 4(SP 5P — 5B 5y
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So by (3) of (10.15) we get
0=R;R; + R;R;
= —R(T\T;) - & Z(T.T;) — R(T;T:) — e Z(T;T:)
= —R(T,'TJ' + TJ'-T,‘) - €1I(T,'-Tj + Tj-T,')
ie. R(T.T; + T;T:) = 0 and Z(T\T; + T;T;) = 0 so (3) of (10.16) follows.
(1) of (10.186) is trivial:
T! = §P 4.5
= 5(2) + 15(3)
=T,
since .5',(2), .5',(3) are symmetric.

Finally —I,,/3 = R? = —R(T\T)— &, Z(T.T;) so Z(T.T:) = 0 and R(T.T;)
= I, /5. Hence, by definition, as required,

T.T; = R(T.TS) + Z(TT5) = Luys.

Step 7. (cf. Step 3). By the corollary to Proposition 3 in Appendix 1, find
O such that T._g = O V,._¢0', where is O is a complex matrix - note that
the T’s are complex,

05’ = in/8, Vr—ﬁ = In/87
and where V; is defined, fori =1,2,...,r ~ 7, by

T, = OV;O'.
The V; again satisfy equations similar to (10.16):
M V=V
(2) ViVi=IL.s 1<i,j<r—6 (10.17)

(3) ViV +ViVi=0(i#7)
Now take j = r — 6 in (3) of (10.17) and use (1) of (10.17) to find that

Vi=1W; (4 =1,2,...,r — 7), where the W, are real symmetric matrices.
These W; then satisfy:

(1) Wi =W,
(2) W = I8 1<4,j<r—1 (10.18)
(3) WiW; + W,;W, =0 (i # ;)

Step 8. (cf. Step 4). By the corollary to Proposition 1 in Appendix 1, find
a real orthogonal matrix O such that

Wr—7 = 0Xr—70,
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where O0' = I,,/5, and

(I, O

and define X; (i =1,2,...,r — 8) by

W, = 0X;0'.
Again check that the X; satisfy
1 X=X
(2)  X!=I.s 1<4,j<r-1 (10.19)

(@) XX;+X;Xi=0(#))
Now finally put j = — 7 in (3) of (10.19) and use (1) of (10.19) to get

0 Y
L‘(w 0)

_ (P Qi
Xi= (5.' R.’)
as before and use (10.19). Since X? = I,,/3, it follows that |X;| # 0 and so
this is possible only if b = § — b. Thus if n/8 is odd, (10.19) has only one
element i.e. » —7 =1 or r = 8 and indeed for r = 8, (r,n,n) (8 || n) is
admissible; put n = 8m (m odd). Then using the 8-square identity, we find
that
(X4 + XDV 2+ 4 YY) =X+ + XDYE+... + YD+
e+ X+ XD+ + YD)

=Z 4. +Z+.. .+ 2.,

as required. If n/8 is even, then b = n/16 and the condition on the Y;

- Doy n ;
becomes (the Y; are {¢ X {% matrices)

(1) Y"Y'zl = In/16
(2) WY AY¥=0G#))
These are the same as (10.2) substituting » with r — 8 and n with n/16
We have proved the following:
(r,n,n) s admissible iff (10.2) holds iff (10.20) holds iff (r - 8,15, %)
s admissible.
ie. p(n)=riff p(n/16)=r — 8= p(n) — 8.
We have thus proved the crucial formula
n

p(n)=p(16) +8 (*)

To get the result in the form given in Theorem 10.1 we may now proceed

Indeed first put

} 1<i,j<r-8 (10.20)
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as follows. Write
n=24* .y (uodd, k=0,1,2,3)
=16'. 2% . u.
Then
p(n) = p(16'1 - 25 -u) + 8 (by %)
= p(16'72 . 2% . u) + 8+ 8 (by * again)
= p(2% - u) + 8L
Now according as £ =0,1,2,3
P(2ku) = p(u), p(2u), p(4u), p(8u)
=1,2,4,8
respectively. So p(n) = 1+8l, 2+8l, 4+8I, 848, accordingas k =0, 1,2,3.
This is exactly what Theorem 10.1 says for in that theorem, 4/ + k = m so
k=0,1,2,3 implies
m=4l, 4l +1, 4l+2, 4l +3

hence2m+1=8/+1,2m=8/+2, 2m =8/ +4, 2m +2 =8l 4 8.
This completes the proof at last. O

Remark 1. Other proofs of the Hurwitz-Radon theorem and their ver-
sions have been given over various fields by many authors, with methods
involving the representation theory of groups or Clifford algebras; see e.g.
Eckmann (1943) [E1], Wolf (1963) (W3], T.Y. Lam (1973) [L2], Shapiro
(1977) [S3,4,5] and Yuzvinsky (1982) [Y2].

Remark 2. See also the excellent survey article by D.B. Shapiro (1984)
[S6] for other references.

Notes on Chapter 10

Very little is known about the admissibility of the general triple (r,s,n).
There is the following “bold” conjecture:

The admissibility of (r,s,n) over a field K is independent of K (char
K #2).
There are some interesting sequences of admissible triples. The Hurwitz-

Radon theorem provides examples of size (p(n),n,n) giving the sequence
(2,2,2),(4,4,4),(8,8,8),(9,16,16),(10, 32, 32),...
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The first example, not a consequence of this, was one of size (10,10, 16)
obtained by K.Y. Lam in 1966 [L1]. In 1975, Adem [A2] found another
infinite family of examples, the first few terms being

(3,5,7),(10,10,16), (12,12, 26), (13, 13,28), (17, 18,32), ...

In 1982, Yuzvinski [Y2] constructed yet another infinite sequence beginning
with

(10, 10, 16), (12, 20, 32), (14, 40, 64), . ..

Since (10, 10, 16) appears in both these infinite sequences we give it explicitly
in Chapter 14. See [S6] for more information about this.

Some interesting results regarding the admisibility of the general triple
(v, s,n) are known. Here are a few samples:

1. (Adem-1980,1981, Shapiro-1983)(see [A3, A4], [S5]). Let char K # 2
and suppose (r,n — 1,n) is admissible over K. We have the following:

(i)  if n is even, then r < p(n),
(iil) ifnisodd, thenr < p(n—1).

2. (Yuzvinski-1983). If n = 3(4), then (4,n — 2,n) is not admissible over
K.

For more information see Shapiro [S6].

3. We give an explicit solution of the Hurwitz-Radon equations (10.2) for
r = p(n). Once the Ay,..., A, are available, the matrix A given by 4 =
A1 Xy +.. . +A. X, gives the (r,n,n) identity (X7 +.. . +X2)(YZ+...+Y?) =
ZE + ...+ Z2 where Z = AY. This, then is a proof of the Hurwitz-Radon
theorem one way round for all fields of characteristic 0.

In Chapter 14, we shall give the so-called “integral version” of the
Hurwitz-Radon-Eckmann theorem due to Gabel. In the exercises to Chapter
14, we outline a construction of the bilinear functions Z,, Z,, ..., Z,, with
integer coeflicients for the above identity via the Hurwitz-Radon equations
(10.3), rather than (10.2).

(i) For 1 £ b < 3, identify R?" as the algebras of complex numbers, quater-
nions, and Cayley numbers respectively with basis e¢g = 1,e;,...,e2b;
satisfying e = -1 (1 < i < 2% - 1) and eje; = —eje; (1 <4, 5 < 28 1,
i # j). Let Epj (0 < j < 2°—1) be the matrix corresponding to the left mul-
tiplication by e;. These then form a system of p(2%) = 2® Hurwitz-Radon
matrices of order 2 satisfying (10.2) (b = 1,2,3).

(ii) Let E = (_01 ;),T= ((1) _°1> For n = 16 these are p(16) = 9
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Hurwitz-Radon matrices given by

E4,0 = IlG
E,i=T®E;s (15:<7)
E,s =EQ®I

(iil) Finally, let K = ((1) (1))®Is of order 16 and let K®* = KQKQ®...QK

(h factors). For n = 24¢+8(2m 4 1) (0 < b < 3), let
Ag=1,
Asnyi= L @ (K®*) @ Egi(d =n/2" M 0<h<a—1, 1<i<8)
Agati = D1 ® (k®“) ®E;(1<;<22-1,1<5<3).
Then Ax (0 < k < 8a+ 20 — 1) form a system of p(n) = 8a + 2% Hurwitz-
Radon matrices of order n.

Note. The tensor product A® B, is sometimes called the Kronecker product,
also written A x B. (See Chapter 14 for the definition.)

Exercises

It will be of help if readers familiarize themselves with manipulations of the
quaternions H and the octonions 2. The quaternions are defined as

g=ag -1+ ai+azj+ask = (ap,a,az, as)
where ag,ai,a2,a3 € R, 12 = j2 = k¥ = -1, i = k = —ji, etc. Then we
can multiply ¢, = (=, 21,22,23) and ¢2 = (o, ¥1,Y2,y3).- For ¢ € H, the
conjugate quaternion ¢ is given by
g = ag — a1t — azy — ask = (ag, —a1,—az,—as).

Then ¢7 = a2 + a? + a2 + &, the norm of ¢, written |lgf|. If ¢ # 0,
then [|g]] # 0 and for such a ¢ we have the inverse ¢! = H_:ﬂ(j' Further,
D142 = 21 (check), and the map a — (,0,0,0) (o € R) gives an injective
isomorphism of R into H. We have ag = ga for alla € R, ¢ € H. His a vector
space of dimension 4 over R with basis 1, 1, j, k¥ (by abuse of language).

The octonions 2 are an 8-dimensional vector space over R. They form a
non-associative algebra over R. We may write a general octonion as

Zoto + Z1t1 + ... + T7i7 (z; €R).

The multiplication table is given in Chapter 14 and it will be assumed to
be known.

1. Prove

(i) Qis not associative i.e. z(yz) # (zy)z in general
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(i) forallz,y € Q, (zz)y = z(zy)
and (yz)z = y(zz).

We say (2 is alternative.

2. Write [z,y, z] = (2y)z — z(yz), the associator. Using [z,y + z,y + 2] =
0 = [y+2z,y+2,z] show that [z,y, z] +]z, z,y] = 0 and [2,y, z] +]y, 2,2] = 0.
Deduce that {z,y,2] = —[z,2,y] = [2,z,y] = —[2,y,z]; i.e. that |z,y,2]is
skew-symmetric.

3. For z = z¢ip + ... + z7i7, define the conjugate £ = zotp — ... — z7i7.
Prove
(i) the mapping z5z is involutorial (i.e. I* = ¢) and an anti-auto-

morphism of Q;

(i) Ty=9zZ,Z=cforallz,y € Q;

(iii) the traceof z,t(z) =2+ Z € R and the norm of z, n(z) = zZ =Zz €
R.

4. Show that as a vector space /R, & ~ H® H. Show that

(1) fz= ((11,(12) (al, as € H), then 7z = ((_11,—a2).

(ii) if z = (@1,a2), y = (b1, b2) are in Q where a,, a2, b1, b2 € H then

zy = (a1h; — byaz, baay + 0251)~
5. Prove that (1,0,0,0,0,0,0,0) is a 2-sided unit in Q.

6. The mapping ¢ : R —  given by
¢(z) = (<,0,0,0,0,0,0,0)

is an injective isomorphism of R into 2.

7. For z1, z2,... € @ write R(z;,2,...) for the subalgebra in § generated

by z,,z2,... over R show that

(i) z € R(z) for any z;

(ii) R(z,y) is associative for any z, y € Q;

(i) if zy = yz, then R(z,y) is a field, isomorphic to R or to C; so that
then there exists a z € Q such that R(z,y) = R(z); see [A5] for more
elaborate properties and identities in 2.
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Introduction to quadratic form theory

So far we have hardly used even the most basic definitions and properties of
quadratic forms and it is now time to develop the rudiments of this theory
as we shall need it in the next two chapters.

So let K be a field with charK # 2. By a quadratic form f(Xy,...,X5)
over K we mean a homogeneous polynomial of degree 2 in the variables
Xi1,..., X, with coeflicients in K:

f(X,... ,.)_Eza,,xx (ai; € K)

i=1 j=1
To render the coefficients symmetric it is customary to rewrite f as

(X, X)—ZE (ai; + aji)X: X
=32 aXiX;

where a; = %(aij + aj;), so that aj; = a};. So we may suppose in the first

place that a;; = aj;.

Definition 11.1. The symmetric matrix A = (a;;) is called the matriz of
the form f.

Definition 11.2. d = det A is called the determinant of f and written
det f.

Definition 11.3. If d =0, we say f is singular; otherwise, non-singular.
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Xi
Let X = ( ) Then f = X'AX. Suppose the variables X,,..., X, are

X
replaced by Y1,...,Y, according to the substitution

X,'=ZC,'J'YJ' 1<i<n,c; €K
=1
Y,
ie. X = CY where Y = (
Y,
f(X1,...Xy) becomes g(Y1,...,Y,): X'AX — Y/'(C'AC)Y. so that the
matrix of g equals C'AC.

) and C' = (cij). On substitution,

Definition 11.4. f and g are called equivalent if there exists a non-
singular change of variables taking f to g as described above: we write

f~g
Corollary 1. ~ is an equivalence relation. O

Corollary 2. If f ~ g then detg/det f € K*.
Indeed det g/ det f = |C'||A)|C)/|A] = |C|? € K*’. O

Definition 11.5. Let v € K. We say f represents v over K if there exist
elements ay,...,a, € K such that

flar,...,an) =1.

Definition 11.6. The set of all non-zero elements of K represented by
f will be denoted by Vy(K) or Gs(K). The symbol G;(K) is generally
reserved for the special form f = XZ + ... + X? and then it is written

Gn(K).
Corollary 3. If f ~ g then Vi(K) = V,(K).
Proof. Let A, B be the matrices of f, g so that f(X) = X'4X, ¢(Y) =
Y'BY, B =C'AC where X =CY. If vy € V,(K) then
v=9(8) = B'BE = p'C'ACB = (CB)'A(CB) = f(CP) € Vy(K)
So V,(K) C V;(K). Similarly V(K) C V,(K). O

Definition 11.7. We say f(X) represents 0 over K if there exist values
ay,...,0a, € K not all 0 such that f(ay,...,a,)=0.
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Definition 11.8. If f represents 0 over K we say f is isotropic /K; oth-
erwise anisotropic.
Clearly f ~ g = f isotropic iff ¢ is isotropic.

Theorem 11.1. Let f represent v # 0 over K. Then f is equivalent to
a form of the type vX7 + ¢(X2,...,Xn), where g is a form in the n — 1
variables X,,..., X,.

Proof. Lety = f(ay,...,ay). Since v # 0, so (0q,...,a,) # (0,...,0).
So we can find a non-singular matrix C whose first column is (a;,...,a,).
Now apply to f the linear map whose matrix is C. We get f(X) = X'4X —
Y'C'ACY = Y'BY say where B = C'AC. Then

by bi2 bin }}jl
Y'BY =(11,...,Ya) b bz ... ban !
bnl bn? bnn Y

b Y1 + b2 Yo + ...+ b Y,
—(Yi,....Y.) by i + b Yo + ..+ b Ya
NS

Now the coefficient of Y? is
by = z Z cixaricn  (since B = C'AC)
= chl(aklcll + ak2c21 + ... + GknCn1)
k

=cp(ancn + azc1 + ... + @1ncn1)

+ co1(ag1€11 + az2¢z + ... + azpcay)

a;; @12 ... Qip C11
_ @z G2 ... Qgq C21
- (611)6217- . 7Cnl)
Gnl Gn2 Ann Cn1
(al cn o
a2 N €21 a9
=(a,,...,a,)A| . |, since ] = ,
\a" Cn1 Qp
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The other terms containing Y, are:
Yi(hiaVo + ... + 01,.Y) + b V1Yo + b 1Y + ... + b Y1 Y5,
So the complete set of terms involving Y7 is
b Y? + V1Ya(biz +b21) + YiYa(bis + ba1) + ... + 1Yo (b1n + bn1).
But B = C'AC is symmetric so this equals

Y, Ys b Yo\’
b1y (Yl -i-bn—2 + b13—3 +... +u) +9(Y2,...,Y5).
bn b1 b1
Now let
b2 Y Y,
b1 b
.-
Y,—-Y,.
This has the non-singular matrix
1 biz/biy ... bin/bn
0 1 0
0 0 1

It transforms the original form X'AX to Y? + ¢(1%,..., Y,) as required.

Definition 11.9. If the matrix of A is diagonal, we say A is diagonal.

Successive application of Theorem 11.1 gives the following theorem.

Theorem 11.2. Any quadratic form /K can be diagonalized by o non-

singular linear substitution, i.e. f ~ a diagonal form.

In terms of matrices this simply means that if A is a symmetric n x
n matrix, then there exists a non-singular matrix C such that C'AC is

diagonal.
Let f(X,1,...,Xn), 9(X1,...,Xm) be two forms.

Definition 11.10. The sum f @ g is defined to be the form f(X) + g(¥)

in m + n variables X;,..., X, 11,..., Y.

We must make sure the variables in f and ¢ are taken different otherwise

it could be confused with the usual sum f + g of f and ¢: e.g. if
f(X1,X2) = X7 +2X3
g(Xl,Xz) = 2X12 + X1 X2+ 3X22,
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then
f®g=X+2X2+2X? + XsX, +3X!
whereas f + ¢ = 3X? + X, X, +5X2.

Corollary 4. g~h = f®g~fDh.

Proof. Let A be the martix of the linear map taking g to h and let n be

the order of f; then (I(;' g) takes f @ g to f @ h.

a

Theorem 11.3 (Witt’s cancellation law). Let f, g, h be non-singular
quadratic forms over K. Then

fog~fdh=>g~h

Proof. Since fp is diagonal, f ~ fo. Then by Corollary 4, f@ g~ fo D g
and f@h~ fodh,s0 fo D g~ fo® h sowe may suppose f to be diagonal
and it is enough to look at the case when dim f = 1, i.e. say f = aX?

(a #0).

Let A, B be the matrices of ¢, h. By hypothesis
aX*®g~aX’0h

So there exists a matrix C = ( S) say such that

24
T D
+fa O _f{a O
(5 2)o-(i 5)
Here S is a row matrix and 7" a column matrix. This gives the following
equations:

vla+T'AT =a
vaS +T'AD =0 (11.1)

S'aS+D'AD =B
We must show that there exists a non-singular matrix M such that M'AM =
B. This matrix M will be found in the form M = D + £T'S, where we shall

choose € suitably later on.
By (11.1) we get

M'AM = (D' + (S'T)A(D + £TS)
=D'AD + (S'T'AD + ED'ATS + £2S'T'ATS
= D'AD + a{(1 - 7)€ — 24€)}5'S
and this equals B if (1 — 4?)¢? — 296 = 1 (on using the last equation
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in (11.1)). That is, if €2 — (y£ + 1)? = 0 which can be made so if £ is chosen
suitably viz. we want £ = £(y€ + 1); either sign will do. If v = 1, take the
negative sign and £ = 1/2 will do. If ¥ # +1, take the positive sign and
£=1/(1 —v) will do.

Finally since B is non-singular, so is M since M'AM = B. This completes
the proof. O

Theorem 11.4. If a non-singular form f represents 0 then it represents
all elements of K.

Proof. Without loss of generality, we take f to be diagonal (see Corol-
lary 3), say, a1 X? +...+anX2. By hypothesis there exists (a1,...,0n) # 0
such that f(ai,...,a,) =0,i.e. @ma? +...4+a,0? = 0, where without loss
of generality we may suppose a;a? # 0. Then we have

2 2
(423 [ 7%
—a1=a2(——> +...+a,.(—> .
(43} (23]

If now v € K* is any element of K*, we wish to prove that f represents 7.
We have

2 2
7=a1(1+;/a1> _al(l—;/m)
2 2 2
() () (529
2 2
Qp 1—7/a1
re(G) (557
=f(1+7/a1 a 1—v/a &‘1—7/(11)

2 o 2 T,y 2
as required. (|

Definition 11.11. A form representing all elements of K is called univer-
sal. For such a form we have

Vi(K)=K".

Corollary 5. A non-singular f represents v(# 0) in K iff
g(XO)Xla"'aXn) = _7@](

represents 0.

Proof. If f represents v, say f(a;,...,an) =4, then
g(l)ala"',an) = _7+ Y= 0
as required.
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Conversely suppose —ya? + f(ai,...,as) = 0; then

v = floy/ag,-..,an/c0)
if ap # 0 as required. If, however, oy = 0, then since not all a; are 0, we
see that f(Xi,...,X,) represents 0 over K; hence by Theorem 11.4, f is
universal so in particular represents 7. O

Theorem 11.5. Let f be non-singular and isotropic, then f ~ Y1Y2 +
g(Ya, e ,Yn).

Proof. Since f is isotropic, it is universal, so in particular it represents 1:
f(ai,...,a,) =1. Hence by Theorem 11.1, f ~ X2 + fi(X,,..., X,).
Since f is isotropic, so is X? + f1, i.e. we can find fBi,..., B, such that
ﬂ% +fl(ﬂ2v"'vﬁn)=0
1e.
fi(B2/Br,-- - Ba/Br) = —1.

Again by Theorem 11.1, fi ~ —X? + g(Ys,...,Y,) so f ~ X2 — X2 +
g(Ys,....Y,). Nowput X; - Xo =Y;, X1 + X2 = Y3, f ~ Yo +
g(YS,---,Yn)- O

Remark. In Theorem 11.5, ¢(Y3,...,Y,) may or may not be isotropic. If it
is, then as in Theorem 11.5, ¢ ~ Y3Yy 4+ h(Y5,...,Y,,). Repeating this we
get to a stage when

f ~ Y1Y2 +... +Y23—1Y23 + ¢(Y23+1,-~- aYn)

where ¢ is anisotropic. Thus in any representation of 0 by Y;Y, + ... +
Y2,-1Y2, + ¢, at least one of the variables Y7, Y;,..., Y3, is non-zero.

Definition 11.12. If f ~ Y; + ... + Y5,_1Y2, where 2s = n, then we
say f is hyperbolic. Equivalently, then,

f~XE-X24+...+X2,_,-X3,

Theorem 11.6. Let |K| > 5. If f = ax X} + ...+ anX? (aj € K) i3
1sotropic /K, then there exists a representation of 0 by f in which all the
variables take non-zero values.

Proof. We first prove that if aé? = X # 0, then for any b # 0, there exist
non-zero elements a, 8 such that

ac® +bp% = A, (11.2)
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Consider the identity

t—1)? 4t
Et+1;2 tarn b
Multiply this by A = aé?:
t—1\2 26 \?
a(f-t_*_—1> + at (H_l) =X (11.3)
Now choose ay # 0 in K such that by?/a # +1. This is possible since
by? = a, by? = —a has at most two solutions each in K and since |K| > 5,

v can be chosen to avoid 0 and these four solutions.

Now put ¢ = by?/a in (11.3) to get (11.2) as required.

To prove 11.6 we now proceed as follows:

If the representation a;€2 +... +anf% = 0 is such that & #0,...,£, #0,
br41 = ... =€, = 0 (r 2 2), then by the above, we can find «, 8 both
non-0 such that

aréz = ara2 + ar+l,32
This then yields a representation of 0 in which the number of non-zero

variables is increased by one. Repeating this process we arrive at a repre-
sentation in which all the variables have non-zero values. 0

Definition 11.13. A quadratic form in two variables is called a binary
form.

Corollary 6. All non-singular isotropic binary forms are equivalent.
Proof. By Theorem 11.5, any such form is ~ ¥1Y5. (]

Theorem 11.7,

(i) Let f be a binary form of determinant d # 0. Then f is isotropic /K
iff —d =42 for some v € K*.

(ii) Let f, g be non-singular binary forms /K. Then f ~ g iff
(a) det f/ det g = 6% for some 6§ € K and
(b) there exists some non-zero element of K which is represented by
both f and g.

Proof. (i) First let f ~ aX? + bY? so that —d = —ab = 4?. Then
f(7,a) = ay* + ba’> = a(y* +ab) =a-0=0.
Since a, ¥ are non-zero, this representation is non-trivial.
Conversely suppose f ~ aX? 4 bY? represents 0 in K, say aa’® +b38% = 0,
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a, B € K, a3 # 0. Then, as required,
aa’ (aa)2
—d=-ab=a-—=|—] .
p? B
(ii) If f ~ g then (i) and (ii) follow by Corollaries 2 and 3 respectively.
Conversely let v # 0 be an element of K represented by both f and g.
Then by Theorem 11.1

f~aX?4BY?,

g~ 7x2 + BIYZ.
Now

By _ B
6=detf/detg = —— = —,
f/detg=— 5 = G

so BY? ~ B'Y? (trivial), i.e. f~g. O
Exercises.

(i) Show that f singular = f isotropic.

(ii) Show that Theorem 11.4 is false for singular quadratic forms.

(iii) Show that Theorem 11.6 is false if | K| < 5.

(iv) Show that if K = F, (¢ # 2), and f has 3 or more variables, then f
represents 0/ K.

We now enter deeper waters. What follows will only be needed in Chap-
ters 12 and 13 and indeed only in the latter parts.

There are three so-called representation theorems of which one has already
been proved as Theorem 11.1. It will be referred to as the first representation
theorem.

The second representation theorem has essentially been covered in Corol-
lary 3 of Chapter 2. However, we need it in a slightly greater generality and
for that we need the lemma of Cassels (see Chapter 2) in greater generality
too. We proceed to work towards this.

Theorem 11.8.

(i) s(K)=s(K(X)) (X is independent indeterminate /K ).
(i) If f(X1,...,Xn) is anisotropic /K, then it remains anisotropic /K (X).
(i) V(K(X))nK* = Vy(K).

Proof. (i) Let s(K) = n, s(K(X)) = m. Since K C K(X) we have trivially
m < n. Conversely suppose fZ(X)+...+ f2,,(X) = 0, where on clearing
denominators we may suppose f;(X) € K[X]. Equating coefficients of the
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highest power of X to 0 this gives
at+...+adk,, =0 (a; € K)
son <m.
(ii) Let
f(AX),... fa(X)) =0 (11.4)
in K(X), where not all f;(X) are zero. Clearing denominators, we may
suppose that X does not divide all the f;(X), for if it does, just divide out
by it. Now put X = 0 in (11.4) to get f(f1(0),..., fa(0)) = 0 where f;(0)
are not all zero; so f represents 0/ K - a contradiction.
(iii) First note that Vy(K(X)) D Vy(K) and K* D Vf(K) so the left side of
(ii1) is a subset of V¢(K). It remains to prove that Vy(K) is a subset of the
left side of (iii). So let d be an element of this left hand side, i.e. d € K*
and d = f(ri(X),..., (X)) r;(X) € K(X). Now consider the form
#(Xo, X1y, X)) = f(Xy,..., X)) — dX¢.

Suppose d ¢ V¢(K); then ¢ does not represent 0/K. For if it does, with
Xo # 0, then d is represented by f/K,i.e. d € Vg(K) which is a contradic-
tion; and if it does with X = 0, then f represents 0/K and so is universal.
Thus it represents d, i.e. d € Vy(K) a contradiction again.

Then by (ii), ¢ does not represent 0/K(X), i.e. f does not represent d in
K(X), another contradiction.

a

The generalized form of Cassels’ Lemma (proved in Chapter 2) is usually
known as the Cassels-Pfister theorem. The exact statement is the following:

Theorem 11.9. (Cassels-Pfister Lemma). Let f(X,,...,X,) be a
quadratic form /K and let p(X) be a polynomial in K[X]| which is repre-
sented by f(X)/K(X), i.e. there exists ri(X),...,ro(X) € K(X) such that
p(X) = f(ri(X),...,ra(X)). Then already p(X) is represented by f over
the polynomial ring K[X].

Proof. 'The proof exactly follows that of Cassels’ Lemma of Chapter 2. It
is a good exercise to write out the proof.
We note the following.

Corollary 7. Let f(Y1,...,Ym) be e quadratic form /K, where the
Y1,...,Ym are independent indeterminates /K. Let p(X,,...,X,) €
K(X1,...,X5) be a rational function /K such that p(ay,...,a,) 1s defined
(aj € K). If f represents p(X1,...,Xp) over K(X1,...,X.,), i.e. there
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ezist rational functions ri(X1,...,Xn),...,"Tm(X1,...,X5) such that

f(ry-oorm) = p( Xy, ..., X0,
then f represents p(ay,...,a,) over K.

Proof. Again, it follows exactly that of Corollary 1 of Chapter 2 following
Cassels’ Lemma.

We now state and prove the following.

Theorem 11.10. (The second representation theorem). Let
(X, X)) =a X +... +a, X2

be an anisotropic form /K (n >2). Let ¢(Yz,...,Yn) = a2Y? + ...+ a,Y;?

and letd € K*. Then d+a, X? is represented by f/K(X) iff d is represented

by g/K, i.e. d+ a1 X? € Vi(K(X)) iff d € Vy(K).

Remark. If f were isotropic /K, then f would be isotropic /K (X) and
so universal /K(X), i.e.

Vi(K(X)) = K(X) - {0},
but clearly V,(K) may not be equal to K*; so Theorem 11.10 is definitely
false without the hypothesis that f is anisotropic /K.

Proof of Theorem 11.10. First let d € V(K), say d = aza} + ... + ana?.
Then

aX?+d=a,; X%+ azal +... + a,.a?,
= f(X,an,...,an) € Vy(K(X)).

Conversely suppose d + a1 X? € Vi(K(X)), i.e. d + a)X? (a polynomial
€ K[X]) is represented by f over K(X). So by the Cassels-Pfister Lemma,
it is represented by f over K[X], say:

d+aX?=afi(X)+...+a.f3(X), f;(X)€K[X] (11.5)
Here each f;(X) is a linear polynomial in X for equating the highest coef-
ficient of X on both sides we get a1b? + ... + a,b2 = 0 (b; € K) - which is
a contradiction since f is anisotropic /K. Write

H(X)=a+bX (a,b € K).
Now one of @ + bX = +X is always solvable for if =1 thena + X = -X

is solvable, otherwise a + bX = X is sclvable. Let C be a solution. Putting
X =Cin (11.5) we get

d+a;C? = a)(CY + Y _ a,;f}(C),

22
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hence
d= z aJ'sz(C)’
j22
i.e. d is represented by g over K. O

Taking f = X? + ...+ X2 we get the following.

Corollary 8. Let K be a field with Stufe at least n (so that —1 i3 not a

sum of n—1 squares in K). Ifd € K* and d+ X? is a sum of n squares in

K(X) then d is a sum of n—1 squares in K (see Corollary $ of Chapter 2).
By an obvious induction on n we obtain the following

Corollary 9. Let K be a field with Stufe at least n. Then
(i) 14+ XZ+...+ X2 isnota sum ofn squares in K(X1,...,Xn)
(i) X?+...4+ X2’ is nota sum of n—1 squares in K(X1,...,X,).
Note that (i) and (ii) are actually equivalent.
We now come to the third representation theorem, which is also known as
the subform theorem. First we need the following

Definition 11.14. Let f(Z,,...,2Z,) and g(Y1,...,Yn) be non-singular
quadratic forms /K of dimension n and m respectively. We say g dom-
inates f (written g > f) or that f submits to g (written f < g) if, for
indeterminates X,,..., X, /K, we have

f(X1,..., Xa) € Vi(K(Xy,..., X))
In other words ¢(Y1,...,Yn) represents f(X,...,X,) over K(X,,...,Xy,),
i.e. there exist v1(Xy,...,X.),. .., Ym(X1,...,Xn) such that

Xy, o, X)) =9(n,. oy ym)

Remark. If g is isotropic /K, then
Vo(K(X1,..., X)) = K(X1,...,Xs) - {0}

and so ¢ dominates any given form f. Thus the notion of dominance is
significant only in the case when ¢ is anisotropic /K.

Corollary 10. Let @ € K*. Then, by definition, ¢ > aX? iff aX? €
Vo(K (X)) iff a € Vy(K(X)), for aX? € Vo(K(X) which means there exist
rational functions v1(X), ..., ym(X) such thataX? = g(m (X),...,ym(X)).
Thus, if for ezample, g is diagonal i.e. g = a1y3(X) + ... + amyL(X) s0

man (2 4y (200,
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and conversely if a = a173(X) + ... + am72,(X), then
aX? = al(Xfyl(X))2 + oot em(Xym(X))?
iff a € V,(K) (by Theorem 11.8, (ii)).

We now state and prove the main theorem.

Theorem 11.11 (The third representation theorem). Let
g(Y1,...,Yy) be an anisotropic form over K and let f(Z,,...,2Z,) be any
form of dimension n over K. Then g = f iff f is equivalent to a subform
of g; tn other words, there exists a form h over K such that g ~ f @ h. In
particular this implies m > n.

Proof.  First suppose ¢ ~ f @ h, f(X1,...,Xn) € Vi(K(X,,..., X))
for we must show that f(Z,,...,Z,) represents f(Xi,...,X,) over
K(X1,...,Xn). To do this just take Z, = X; € K(X1,...,Xn),..., Zn =
X, € K(X,,...,X5). Then
Ve(K(X1,..., X)) C V(K(Xy,..., X2a)),
ie. f<g.
To prove the converse use induction on m, the dimension of g. For m = 0,

there is nothing to prove. So suppose we know the result for m — 1.
Let f ~b,Z% + ... + b, Z2. By hypothesis
WX+ ... +b.X2 € Vy(K(Xa,...,Xn)) (11.6)
So by Corollary 7, by - 12 + by - 02+ ...+ b, - 0% € Vo(K) ie. by € Vy(K).
Hence by Theorem 11.1,
g~ LY B¢ (Ya,..., V) (11.7)
for some form ¢’ of dimension m — 1. Here ¢’ is anisotropic /K since ¢
is. View g as a form over K' = K(X3,...,X,) and note that g is still
anisotropic /K(Xs,...,X,), by Theorem 11.8; and put d = b, X2 + ... +
bn X2 € K'. Then (11.6) becomes

hX? +deVy(K(X1,...,Xn)) = Vo(K'(X1))
= Vblyfeag’(Yz,...,ym)-
Hence by Theorem 11.10
d € Vyvs,...vu)(K)
ie.
boX2 4. +b,X2 € Vg (K(X2,...,X0))
or

g =022+ +bZ2
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It follows by the induction hypothesis that, say,
¢ ~bZ . 45,22 @ h,
So by (11.7)
g~bY ®¢'(Ya,...,Ym)
~ b1 ZE 402 . b2

~f@®h.
a

Definition 11.15. Let Ms(K) = {c € K*|cf ~ f}. Such a ¢ is called a
similarity factor for f over K.

We have already met this set M¢(K ) in Chapter 2 where we proved some
interesting properties about it. We now prove the following.

Theorem 11.12. Let f(Y1,...,Ym) be an anisotropic form /K and
#(Z1,...,2Zn) e form of dimension n over K.

If ¢(X1,..., Xn) € My(K(X1,..., Xn)) (i.e. $(X1y...,Xn) - f~ f over
K(X1,...,X.)) then for any a € Vi(K), f contains o subform equivalent
to ap (i.e. f~ ad @y for some p.)

Proof. Since a is represented over K by f so a? is represented over K by

af,i.e. 1 is represented over K by af (just divide by a?).

Now ¢(X1,...,Xa) - f ~ f by hypothesis, so ¢(X1,...,Xn) - af ~ af
(over K(X4,...,Xy,)). Since 1 € V,5(K) we have 1 € V,s(K(X1,...,Xa))-
Hence

H(X1,..., Xn) € Vap(K(X1,..., X0)),
ie af » ¢.
Thus by Theorem 11.11 af ~ ¢@® say, so a? f ~ adpDa, i.e. f ~ apDar.
(I

Remark. The first half of this chapter (i.e. up to the end of Theorem 11.7)
has been beautifully developed in the Appendix of [B2].

Exercises

1. Let f be a quadratic form over K and let @ € K*. Show that M(K) =
M.5(K).

2. Let f be as above and let a, b € K*. Show that f ® aZ? represents —b
iff f @ bZ? represents —a.
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3. Let a, b € K be such that a? 4+ b% = ¢ # 0. Show that X2 + Y2 —- 22 —
cW? ~ XY + ZW.

4. Show that the following conditions are equivalent:
(a) Every 4-dimensional form with determinant —1 is isotropic.
(b) Every even-dimensional form with determinant —1 is isotropic.

(¢) Every 3-dimensional form represents its own determinant.
(d) Every odd-dimensional form represents its own determinant.

5.* (Legendre) Let a, b, ¢ be square free relatively prime integers, not all of
the same sign. Show that

aX? +bY? 4 22
is isotropic /Q iff —bc is a square mod a, —ca is a square mod b and —ab is
a square mod c.
6. p, q, 7, s are distant odd primes such that pgrs # 1(8). Show that
pX? +qY? —rZ? — sW? is isotropic /Q.
7. Let f1, f2 be anisotropic /K. Then fi & X f2 is also anisotropic /K(X).
8. Let f ~ g. Show that f — g ~ a hyperbolic form.
Hint: Let a be represented by f and so by g too. Then f ~ aX? +¢(X>,...),

g ~ aY? +9(Yz,...). Since f ~ g we have by Witt’s cancellation theorem,
¢ ~ . Then

fO-—g~aX]-Y)B s —¢
~XI-Yao¢a—y.

where ¢ ~ 1. Now use induction.
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Theory of multiplicative forms
and of Pfister forms

The object of this chapter is to look at the third generalization of the identity
(1.4) mentioned at the end of Chapter 1. Thus instead of looking at products
of sums of squares, as in (1.4), we look for more general quadratic forms
g(X1,...,X,) over the field K, which satisfy the identity

9(X) - ¢(¥) = ¢(2)
where Zj is required to be bilinear in the X; and the Y; or indeed more
generally we could let Z, € K(X,,...,X,,Y1,...,Y,). This leads to the
study of the so-called multiplicative forms and in particular the Pfister forms
of which we have already had a flavour in Chapter 5.

Pfister forms have revealed various new facets in the theory of quadratic
forms and promise to hold the key to other unknown areas in the study of
Witt rings.

It is expedient to first introduce the general Pfister forms rather than
look directly at the identity ¢(X) - ¢(¥) = ¢(Z). We have already met the
1-fold and 2-fold Pfister forms viz.

®1(X,Y) = ®,(X,Y) = X? + a¥?
and
®2(X,Y,Z2,T) = ®.4(Z,Y,Z,T) = X* + aY? + )(Z* + aT?) (a,b € K).

These satisfy the following two remarkable properties:

Theorem 12.1.
(i)  The totality of non-zero values of K (i.e. the sets Go(K) or Va(K)
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in the earlier notation) represented by &, (or ®3) form a group under
multiplication.
(i1) If ®, (or ®;) is isotropic, then it is hyperbolic, i.e.
& ~X?-Y?~A XY
@~ X2 -Y?+ 22 -T?~ XY + ZT.

Proof. (1) The closure property follows from the following striking identi-
ties:
M (XF +aX))(Y? +a¥) = (Xa¥1 4 aX212)’ + (X1 Ys — Xo1)?
(X2 4+ aX? +bX2 + abXI)(Y? + aY} + bYF + abY})

(I1) = (X1Y1 + aX2Ys 4 bX3Ys + abXYy)?

+ a(—=X1Y; + XoY; — bX3Y, + bX4Y3)2

+b(—=X1Y3 + X3Y) + aX,Y, — aX,Y3)?

+ ab(—X1Y; + X4Y7 — bX, Y3 + bXaY;)2.

As for the inverse of o = X? + aY2?, we have

1 X? +aY? X\’ Y\’
—=—°‘-=—J—’i—=(;> +a(-c;> € Ga,(K)

and similarly for Gg,(K).

(ii) We first look at &; = X? + aY2. Since &, is isotropic, there exist a,
B, not both zero, such that a* + ¢8? = 0. Here both «, B are non-zero
for a = 0 if and only if 3 = 0. Hence a = —(a/B)? and so, transforming
X — X and (%Y) — Y, and noting that the determinant of this map is

2
= B/a #0, wehavex2+ay2=x2—(%) ~X?_Y? as

| 1 o
0 f\a
required.
For the form ®, there exist «, 3, v, 8, not all zero, such that
a® + aB? + by + abé® = 0.

Here if a # 0, on dividing by it we see that —1 is represented by aY? 4522 4
abT? while if & = 0, then aY? + bZ? + abT? represents 0 non-trivially in K
and so is universal; so in particular represents —1. Thus aY? + bZ? + abT?
always represents —1 over K and sois ~ —Y2+4(Z,T) ~ -Y?% +s2% +tT?
say. Therefore &, ~ X2 —Y?+ 52?4+ tT?. Comparing determinants we get
t = =lx (a square) so &, ~ X2 —Y? + s(Z% — T?). But now on letting
Z+T—-(Z-T)/s,Z—-T — Z + T we see that

Z-T
s(Z*-TH=s(Z+T)Z-T)—s

Hence &, ~ X? —-Y? + 22 - T2 O

(Z+T)=2*-T"
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We define the m-fold Pfister form by induction as
O m(X1,...,X2m) = Payas,.00m (X1y ..., Xoam)
=Pn 109 am®Pm-1.
Our first aim is to prove that properties (i) and (ii) of Theorem 12.1 hold
true for ®,,. Before proving this we familiarize ourselves in playing around
with easy identities. We prove the following.

Theorem 12.2.
(i) a(X?2-Y?)~X?2-Y? (anya € K*).
(i) If some a; = —1 then @, is hyperbolic i.e. ~ XZ—XZ+.. . +X2n_,—
XZm.
(i) Ifar =1 then ®,(ar,...,am) ~ 28m_1{az,...,am).
For 2-fold Pfister forms, we have
(iv) Ifa, B € K are such that ¥ = aya? + 3% # 0, then
XP+ar X2+ ax( X+ an X2) ~ X+ an XE + aev(XE + a1 X32).
(v) Ifa, B €K are such that vy = ajo? + apf? # 0, then
X} + a X3 +aa(X3 + a1 X3) ~ X7 +9X] + ar02(X3 +7X7).

Proof (iYLet X+Y - 1(X-Y), X -Y — X +Y and result follows.

a
(ii) If for example a; = —1, then

By ar,mam (X1, Xom) = X7 = X3 + ap(X5 — XJ) + as(....)
b XEoXE4XE XD 4.,

using (i) above repeatedly.
(iii) If @; = 1 then

q’al,az,...,am(xly oy Xom)

=X+ X7 +ax( X+ X)) +as(X2+ X+ aa( X7+ XD+ ...

= X12 +a X2 + a3(X52 +a X))+ ...+ X7 +a, X}

+a3(X62 +a2X82)+

=P 05,0m (X1, X5y ooy Xom 1) + @4, 0,0 (X2 Xy ooy Xom)

=29
as required.
(iv) By Witt’s cancellation law, it is enough to prove that

ax(X3 + a1 X3) ~ apv(X3 + a1 X3).
2

A2,...,Gm

Now the left side represents a28% + a1a2a? = azy and so is ~ a7 X? + cX?
say. Comparing determinants we get as - a1a; = azycX (a square) or ¢ =
ayah X (a square), so the above is equivalent to

ayy X3 + a1a27X; ~ axy(X? + a1 X3).
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(v) @1X? + a2Y? represents v = a1a? + a28? (#0) and so is ~ vy X% + cY2.
Comparing determinants we get ¢ = ajas X (a square)/y. Hence
a1 X? +ayY? ~ +X? + ajagyY?.
It follows that
X2+ ar X} +a3(X3 + a1 X3)

~ X+ ar X} +a, X+ ara, X?

~ X2y a102X? + a; X} + a3 X? (remaining)

~ X12 +arap X? + v X2 + alag’yXZ (by the above)

~ X2 4y X2 4 myan(XE +4X2)

(]

Pfister showed that the two properties of Theorem 12.1 hold true for the
m-fold Pfister form. From Theorems 12.1 and 12.2 we see that isotropic and
anisotropic forms behave differently. However, the corresponding isotropic
forms also satisfy identities similar to those satisfied by ®, and ®, 3. Indeed,

(X2 = XI)(Y2 - ¥2) = (1Y + o a)? — (XiYs + oY ).
Since X? — X2 ~ X1 X2 we ought to have a simpler identity of the equivalent
form X, X,. Write the above identity as
(X1 + X2)(Xh — Xo)(Y1 + Yo)(1h - Y2)
=(Xih + XoY2 + X1 V2 + X1 )P x
(X1ihh + XpY, - XY, — X2Y1)2,
and apply the transformations
Xy (X +X)/2] Yo+ )2
X; o (G —X)/2 [ Yoo (% - a)2
which are supposed to take X? — X2 to X, X,. We get X, X2 - V1Y, = 2,2,
where Z, = X, Y3, Z; = X2Y> which is a trivial looking formula of course.

Since this is simpler than the identity for X? — X2, we look for the identity
for the isotropic Pfister form in this shape and we indeed have:

(X1 X2 + XaXa) (N Y2 + YaYs) = 2125 + 232,
where
Zy = (X1Y2 + X3Y4),Z, = (XoYh + X,Y3)
Zy = (X1Ys — X31),Z4 = (XY — X, Y3).
Actually in Chapter 5 we already proved the group property of the set
Gs,.(K); but we shall now give a different proof of this to exhibit various

methods employed in this set up. The crucial result in this game is the
following.
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Theorem 12.3. If b # 0 is an clement of K represented by ®,,, then
&, ~ bP,,.

Proof. Weuseinductiononm. Form =1, ®; = X2+a¥Y?2,b = ul4av? #0
is represented by ®,. Then

bd, = (u2 + (1'02)()(2 + aYz) =(uX + avY)2 + a(uY — vX)2
~ X% 4aY?
using the non-singular transformation

uX +avY - X
—-v X +uY -Y

avy

whose determinant equals =u? +av? #0.

So suppose the result is true for m — 1 > 1. We have &, = &,,_1 &
a;®m—1. Since ® represents b, we have b = ¢ + a,,d, where ¢, d € K and
are represented by ®,,_;.

Case 1: ¢d # 0. Then by the induction hypothesis
C@m__l ~ Qm—l ~ de—l ~ Cd@m_l (121)
(the last since f ~ g = af ~ ag for any a € K*). Now

b = (c+ amd)®m = (¢ + amd)(Pm—-1 D amPm-1)
~ (C + amd)((pm—l 57] Cdarm‘:]?m—l)
=(c+ amd)®m-) ® cdam(c+ amd)®y_;.

Now
(¢ + amd)(X? + cdapnY?) ~ cX? + a,,dY? (12.2)

for the right side represents ¢+ apd (put X =Y = 1) so it is equivalent to
(¢+ amd)X? + aY?. Comparing determinants we get camd = (¢ + amd)a X
(a square) so the right side is

camd 2

~(c+ and)X? +

(¢ + amd) X (a square) '
=(c+ amd)(X? + cdamY?) =  left side.
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So the above (starting from b®,,) is, using (12.2) repeatedly,
~ (et amd)[ X + a1 X7 +a2(XF +a X))+ ...
tedam( X2+ a1 X3 +a(X +an X2) +...)]
= (c + amd)[(X] + cdam X (?) + ar(c + amd)(X7 + cdam X77) + ...
~(cX? + amd X + a1(cX] + amdXP) + ...
=cPr_1 ®and®n,_
~Pp1 B amPm-1 (by (12.1))
=&,
as required.

Case 2: cd =0. If c =0 then b = a,,d where ®,,_, represents d. Hence
m = amd(®m-1 ® am®m_1)

~ md®p_y B dP,,

~am®m_1 ® 81 (by (12.1))

=,
as required. Finally if d =0, then b = ¢ and

b = (P11 ®am®Prm_1)
~Pmo1 BcamPmoy ~ P B an®m_1  (by (12.1))
=&,

as required. O

Remark. The property of Theorem 12.3 is expressed by saying that the
form @, is “round”.

Going back to the notation of Chapter 2, we have

Me (KY={c€ K*|c®m ~ ®n},
the group of similarity factors of &, over K. We prove now that Ms,  (K) =
Va..(K): the totality of non-zero elements of K represented by &, (also
denoted by Gs,, (K)).

Now &,, represents 1 (since it begins with X? and putting X; = 1,
X2 = ... = 0 gives 1). Noting this let « € V so ®,, represents a; hence
ad,, ~ &, by Theorem 12.3,i.e. a€ Mor VC M.

Conversely let ¢ € M so that c®,, ~ ®,,. Since ®,,, represents 1 so cP,,
represents ¢. But ¢®,, ~ &, so ®,, represents c,1.e. c€E Vso M CV.

It follows that M =V as claimed.

We have thus proved the following.

Theorem 12.4. Let ®,, be the m-fold Pfister form; then Vs, (K) =
My, (K) 1s a group under multiplication.
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This proves property (i) of Theorem 12.1 for the general Pfister form ®,y,.
We now deal with property (ii) and prove

Theorem 12.5. Let &, be isotropic; then ®,, is hyperbolic.

Proof. We use induction on m. For m = 1,2, Theorem 12.1 (ii) gives the
result, so suppose the result is true for m — 1 and write

¢m = <I>m_1(X1, e ,Xgm-l) & aQO_l(X2m—l+l,. . ,Xgm).

Case 1. ®,,_, is isotropic. 'Then by the induction hypothesis ®,,_) is
hyperbolic, say ®pm-1 ~ X? — X2 + ... + Xp2m-1_y — X7.._1. Then by
Theorem 12.2 (1), am®m-1 ~ Pm—-1.

So ®,, ~ what is required.

Case 2. ®,,_, is not isotropic. Since &, is isotropic, we get an equation
o + apP = 0, where, since ®,,_; is not isotropic so af # 0. Here «,
B are represented by ®,,_;. So by Theorem 12.4, af is represented by
®,,_1, but af = —a;nF?%; hence —a,,#* and —a,, is represented by &,,_1.
Theorem 12.3 now gives —ay, @,y ~ ®ppy-
Hence
=P 1 B am®Pm-1 ~ P & Py
=X+ X taXi+...— Xomo1yy — ang,,._H_z
bl a2X22,,._1+3 —_— e
= Xl2 - X22,,._1+1 + a2(X22 - X22m-1+2) + a2(X§ - X22m-1+3) t...
~ X12 - X22,,._1+1 + (X22 - X22m-1+2) + (Xg - X22,,._1+3) +.-.
by Theorem 12.2 (i). This completes the proof. a

The group property in Theorem 12.4 has been derived without the use of
the famous identity satisfied by the Pfister form ®,,, proved in Chapter 5.
We now again prove this identity using Theorem 12.4. We have

Theorem 12.6. Let X;,...,Xom; Y7,...,Yym be two sets of independent
indeterminants over K and let L = K(X,,...,Xom,Y,...,Yom). Then
there exist rational functions Z,,..., Zam € L such that

Bm(Xy,. .., Xom ) B(Vh,..., Yam) = Bu(Z1,..., Zom) (12.3)

Proof. By Theorem 12.4, Gy, (L) is a group under multiplication. Denote
the variables in ®,, by ui,...,usm. Then ®,(u;,...,us~) represents the
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elements ®m(X1,...,Xom) and &5, (Y3,...,Y2m) € L (just put u; = X; and
Y respectively), so it represents their product, i.e. there exist Z,,...,Z2m €
L satisfying (12.3). O

Are there other quadratic forms which satisfy similar identities? To for-
malize the property expressed by the identity (12.3), we make the following

Definition 12.1. Let K be a field and ¢(Xi,...,X,) a quadratic form
defined over K having a non-singular matrix. We say ¢ is multiplicative if
there exists a formula

¢ Xy,...,. Xn)g"N, ..., Vo) =492, ..., 2Zn) (12.3)
where Z; € K(X,,...,X,,11,...,Ya).
We have the following.

Theorem 12.7. Let ¢ be a quadratic form defined over K. Then ¢ 13
multiplicative iff for any field extension L O K the set V(L) ts a group

under multiplication. In particular g represents 1, the identity of V (over
K)

Proof. Let L = K(Xy,...,Xa,11,...,Ys). By hypothesis Vg(L) is a
group, so ¢ is multiplicative (see the proof of this fact for Pfister forms
given above). This proves sufficiency.

Conversely, let ¢ be multiplicative, so we have the identity (12.3)'. We
have to prove that V¢(L) is a group for any extension field L/K.

Let g(c1,...,¢n), ¢(dy,...,dn) be two non-zero values taken by ¢ over
L (ie. ¢j,d; € L). By (12.3)', q represents the polynomial ¢(X,,...,X,)-
q(¥1,...,Y,) over K(X,,...,X,.,Y1,...,Y,) and hence also over
L(Xi,...,Xa,1,...,Ys) (X;, Y; remain indeterminates over L). Hence
by the Cassels-Pfister Lemma, Theorem 11.9, ¢ represents

glery. .. yca)g(dy,. .., dy) over L.
So V4(L) is a group under multiplication. d

Example 1. If ¢ is a Pfister form, then by Theorem 12.6, q is multiplica-
tive.

Example 2. If ¢ is any isotropic form defined over A, then q is isotropic
over any extension field L/K and so V,(L) = L*, a group, so again ¢ is
multiplicative. Thus any form ¢ isotropic /K is multiplicative. There are
no further examples of multiplicative forms because we have the following
remarkable theorem.
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Theorem 12.8 (Pfister). Let ¢ be an anisotropic multiplicative form
defined over K. Then q must be a Pfister form.

Proof. Let ¢ be of dimension n. Since ¢ is multiplicative, ¢ represents 1,
by Theorem 12.7, and so

g~X*o f,
say. If n = 1, then ¢ ~ X? which is the zero-fold Pfister form as required.
So suppose n > 2. Let m be the largest positive integer such that ¢ contains
(as a direct summand) a subform equivalent to an m-fold Pfister form &,, =
¢(a.],a.z,...,a.,,.)(Xl’ s aXT"): say,

=%, f.
We claim that n = 2™. If not let n > 2™ and let

L=K(X,,...,.Xom,7;,...,Y2m)
where the X, Y; are independent indeterminates. Since @, is multiplica-
tive, we have a formula
O( X1y, Xom)Bm(Vi, ..., Yom) = ®(Zn, ..., Zom)

with Z,,...,Zsm € L.

Since n > 2™, the equation ¢ = ®,, ® f shows that dim f > 0. Let
¢ € V5(K) be any element of K* represented by f. In the field L we have
A=P,(X1,..., Xom)+ c®r(Y1,...,Yom) # 0,
for otherwise we would have an algebraic equation connecting the X; and

the Y; with coefficients in K.

Wl'lte_X_ = (Xl,---,XZ"‘),X = (}/1, .,ngm),l = (Z],... ,ng), so that
On(X) ,(Y) = ®n(Z). Then
_ 2u(2)

. (Y)

A +c®n(Y)

_ $m(Z)

= @m(}_/) ((Qm(z))2 + C)

= Qm(x)[ém(l/ém(z)) + C]'
Here the first factor ®,(Y) € Vs, (L) C V,(L), while the second factor
€ Vs, ® f(L) C V4(L) too. But ¢ is multiplicative, so V,(L) is a group. It
follows that A € Vi(L).

Since ¢ is isotropic /K, we can apply the third representation theorem
(Theorem 11.11) and conclude that over the field K, ¢ contains a subform
equivalent to 4, i.e. to ., ® c®P,,. But &, DcPy, is the (m+1)-fold Pfister
form @41 = ®(q,,....a,.,c) and this is a contradiction to the maximal choice
of m. Thus n = 2™ and in the equation ¢ = ®,, @ f, comparing dimensions
we get dim f = 0 so ¢ = ®,, as required. a
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In the identity (12.3) satisfied by all Pfister forms, we saw in Chapter 3,
that we could take Z; to be linear polynomials in the Y; with coefficients in
K(X,,...,Xm). We now give a direct proof of this fact in the spirit of this
chapter. We ask if this result is true for all multiplicative forms. Since only
isotropic forms remain, we state the full result in the form of the following.

Theorem 12.9. Let ¢ be a multiplicative quadratic form of dimension n

over a field K, so that g satisfies ¢(X) - ¢(Y) = ¢(2), Z € (K(X,Y))".

Then

(1)  If q is isotropic /K, we can choose the Zy as polynomials in both the
Xiand theY; (154,35, k<n),

(i) If q is anisotropic /K, so that q is an m-fold Pfister form &, and
n = 2™, then the Z; can be chosen homogeneous linear polynomials
in Y1,...,Y, with coefficients in K(X,,...,X,).

Proof. (i) Since q is isotropic /K, we have

q(u1, -, un) ~ Ui —ug + fus,.. ., Un) (12.4)
Then
{dX)-q@)+1\ (¢X) qX) -1\
()o@ = (1R 1) (oK) o) - 1)

so by taking u; = (¢(X) - ¢(¥)) +1)/2, uz = (¢(X) - ¢(¥) — 1)/2 and u3 =
... =u, = 0in (12.4), we see that q(u,,...,u,) represents ¢(X)- ¢(¥) and
the u’s can be chosen as polynomials in the X, and the Y; with coefficients
in K since the equivalence (12.4) is linear /K i.e. in (12.3) the Z got
from the uj using the equivalence (12.4) are polynomials in the X; and the
Y;. This proves (i).
(ii) Let A be the n x n matrix /K corresponding to the Pfister form
®,.(uy,...,upm) so that
®m(u) =uAu'  (u a row vector) (12.5)
Now let L = K(X,Y). ®,(u) represents the element ¢, (X) € K(X)
(Just put uj=Xj;), i.e. @m(X) € Vp,, (u)(K (X)) which is= Mg _ (4 (K(X)).
Hence by Theorem 12.3, &,,(u) ~ ®m(X) - ®m(u) over K(X) (®m(X) is
the b of Theorem 12.3), i.e. the matrices A and ®,,(X)A are congruent
/K(X), i.e. there exists a matrix equation
$.(X)- A= BAB' (12.6)
where B is an n x n matrix /K(X).
Now in the field L we have
(X)) Bm(Y) =Em(X) X AY' (see (12.5))
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= X(@m(g’_)A)_K' (Pm(X) is a scalar of K(X))
=YBAB'Y' by (12.6)

— (YB)ALBY

= ®m(¥B) = ®m(Z),

say, where Z = Y B and so each Z; is linear in the Y; with coefficients from
the matrix B, i.e. in K(X). This proves (ii). |

Remark. The converse of Theorem 12.9 holds. Namely, if ¢ is any multi-
plicative form (isotropic or anisotropic) then ¢(X) € M, (K(X))ie. ¢(X)
is a similarity factor of g(u) over the field K(X).

Proof. The matrix argument in the proof of (ii) above is reversible. 0
Finally we have the following.

Definition 12.2. ¢ is called strongly multiplicative if there is a formula
¢(X) - q(Y) = ¢(Z) with Zj linear in Y coefficients in K(X)
We have the following.

Theorem 12.10.

(1) Let q be anisotropic. Then q is strongly multiplicative iff ¢ is multi-
plicative, iff q is a Pfister form.
(i1) Let ¢ be isotropic. Then q is strongly multiplicative iff q is hyperbolic.

Proof. (i) ¢ strongly multiplicative = ¢ multiplicative (trivial) = ¢
is a Pfister form (Theorem 12.8) = ¢ is strongly multiplicative (Theo-
rem 12.9 (ii)).
(i) Let ¢ be hyperbolic say ¢ ~ u? —u} +.... Let r(X) € K(X) — {0}.
Regarding ¢ as a form /K(X) we have r(X) - g(u),~ ¢(u), over K(X)
(Theorem 12.2 (i)). Since this is true for all (X)) € K(X), it is true, in
particular, for ¢(X). Thus ¢(X) - g(u) ~ g(u) over K(X). Now proceeding
as in the proof of Theorem 12.9 (ii), we see that ¢ is strongly multiplicative.
Conversely let ¢ be strongly multiplicative (and isotropic). Decompose ¢

according to the remark following Theorem 11.5:
2

q(ur,. . un) ~ud —ud . ful,_ —ul, + U2ty -5 Un)
=H®~,
say, where dimH > 0 and + is anisotropic. We must show that dim+y = 0.
Suppose to the contrary that dim~y > 0.
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Now ¢ is multiplicative so by the remark following Theorem 12.9, we have
an equivalence

g X)Hey)~H®y over K(X).

But ¢(X)-H ~ H (Theorem 12.2 (i)). By Witt’s cancellation theorem we get
¢(X)-y ~ v over K(X). Hence for any a € V,(K) we see, by Theorem 11.12
that + contains a subform equivalent to aq:

T~ag®y'.
It follows that ¢ ~ H® v ~ H® aq @ 4'. Comparing dimensions, we get a
contradiction.
Thus dimvy =0, i.e. ¢ ~ H. d

The Venn diagram (given by Lam in [L2], p. 288) summarizes all the
results about multiplicative, strongly multiplicative, isotropic, anisotropic
and Pfister forms. We use the following abbreviations; the Venn diagram is
given on the right:

1 A
I = Isotropic forms
H
A = Anistropic forms
PNnA
H = Hyperbolic forms PNl
P = Pfister forms M—SM

M = Multiplicative forms

SM = Strongly Multiplicative forms

H=SMnI M=PuI SM=PUH

Exercises

1. Prove that if ¢ = aX? + bY? + cZ? represents —abc then ¢ is isotropic.
(¢ ~ —abcX? + a¥Y? + 32?. Comparing determinants abc = —abcaB so
B=-1/a,ie.

g~ —abcX? +a¥? - lZ2
(4

which represents 0 non-trivially with X =0,Y =1, Z = a).

Moral: a 3-dimensional form is universal iff it is isotropic.
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2. (a) Let ¢ be a 5-dimensional form. Show that we can find scalars a, b, c,
d in K such that

dé ~ X2 +aY? + bZ% + abW? + CT.
(b) Deduce that ¢ is universal iff ¢ is isotropic.

3. Let ¢ be a 4-dimensional form /K of unit determinant. Show that the
number of cosets of K** contained in G4(K) is either infinite or a power of
2.

4. (a) Let ® be a Pfister form /K and write ® ~ X? @ ®'. Show that the
equivalence class of ®' is uniquely determined by &, i.e. if also ® ~ X2 @ &"
then & ~ ®". &' is called the pure subform of ®.

(b) Let K be pythagorean in (a). Show that if 1 € G¢/(K) then Gg(K) =
Ge/(K).

5. Show that the four linear forms on the right side of the Pfister identity
(IT) given in the proof of Theorem 12.1 are linearly independent over K.

6. Deduce Pfister’s Theorem 5.1 on the following lines:
Let g=X?+...+ X2 and let Y = a + bZ, where Z € K is fixed and a,
b are represented by ¢ (zero allowed). Show that 1 +Y is of the same form:
let a; denote a sum of 2 squares in K (1 <i < m) so that
Y=ef+e§+a1+a2+...+am_1+amZ. (1)
Let,1<i<m -1,

b-:{a" 1fa,#0

1 ifa;=0
- 2
b = am ifam#0
m VA fan=0

and let ®,, be the Pfister form ®;, 5, . 4. (u1,u2,...,u2m) so that &,
represents e? + e2. Inserting this representation in (1) and using (2), show
that
14V =14+ X+ a1+ XD+ a1+ X2+ ar XD +...
+amZ(1 + Xgm_l_H +...+aaz...am1Xom)...
Show that each bracket has a sum containing respectively 2!, 2% ... 2™

squares (note that each a;, and so a, a5 ... a;, is a sum of 2} squares). Deduce
that (3) is of the form u + vZ where u, v are represented by ¢ as required.

(3)
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The rational admissibility
of the triple (r,s,n)
and the Hopf condition

We know by Hurwitz’s theorem (Theorem 1.1) that the triple (n,n,n) is
admussible over a field K, i.e. the identity

(Xi+.. .+ XDV +...+Y) =2 +...+ 72 (13.1)
with each Z; bilinear in the X; and the Y; with coefficients in K, holds, iff
n=1,24,8.

By allowing the Zx to be rational functions of the X;, Y; with coefficients
in K, (13.1) is seen to hold iff n is a power 2™ of 2 (see Theorem 2.1).

Very little is known regarding the admissibility of the general triple
(r,s,n), i.e. about the identity

P+ + XD+ .. +YD =2 +...+ 22 (13.2)
with the Z; bilinear in the X;, ¥; with coefficients in K.

For r = s, the Radon-Hurwitz theorem (Theorem 10.1) tells us that
(ryn,n) is admissible over any K iff r < p(n).

Definition 13.1. We define rational admissibility of the triple (r,s,n) to
mean the existence of (13.2) with the Z; rational functions of the X;, Y;
with coeflicients in K.

The object of this chapter is to give some very striking necessary and
sufficient conditions for the rational admissibility of (r,s,n) (and related
results) — e.g. the Hopf conditions. Here is the definition and some basic
properties of the Hopf condition.

Definition 13.2. If all the binomial coefficients (}) (n —r < k < s) are
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even, we say the triple (r, s, n) satisfies the Hopf condition or that H(r,s,n)
holds.

Some easy properties of the binomial coefficients give us the following.

Theorem 13.1.

1) Ifn—-r+1>s~1(ie. r+s<n+2)then H(r,s,n) holds vacuously,
(ii) H(r,s,n) = H(r,s,n+1),

(iit) H(n,n,n) holds iff n = 2™,

(iv) Ifn=2™-u (u odd) then H(r,s,n) holds iff r < 2™,

(v) H(r,s,n) holds iff H(s,r,n) holds.

Proof. (i) If r + s < n + 2 then there are no terms in the sequence
(amrn)s- -5 (20)-

(ii) We use the identity

()= () (2) 153

We have H(r, s,n) holds if and only if (n—':'+l)’ ey (521) are all even while
H(r,s,n + 1) holds ifand only if (n+';t1+l), ey (';fll) are all even.
But by (13.3),

(nit-:-Z) = (n—':'+2) + (n—':-}-l)’
G = (o) + (L)
Here all the coefficients on the right side are even by H(r, s, n), hence so are
all the ones on the left side, i.e. iff H(r,s,n + 1) holds.
The moral of this result is that for a given r, s, the minimal n for which
H(r, s,n) holds is the relevant value of n; then H(r, s, m) holds for all m > n.

(iii) H(n,n,n) bolds iff (7), (3),...,(,",) are all even, ie. iff n = 2™,
which is easy to check if n = 2™; conversely if n = 2" - u (u odd) then for

k=2, (}) = (2;;") is odd unless n = 1.
(iv) We have (1 4+ z)? = 14 22 (mod 2) and by induction (1 +2z)" = 1+z",
whenever n is a power of 2. Now simply compare coeflicients.

Remark. More generally let (1) < e(2) < ... < ¢(r) be the positions of
the 1’s in the expansion of n to the base 2; thus n = 3 2°() and

1+z)* = H(l + z°(9) (mod 2).
It follows that the binomial coefficient () is odd precisely when the

n

m
places of the 1’s in the dyadic expansion of m are a subset of the places of
the 1’s in the expansion of n.
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(v) We have (:) = (nfk) and so H(r, s,n) holds iff

(a7 ) ara) o (2)

are all even, i.e. iff

(rfl)’(rfz)""’(n-2+1)

are all even, i.e. iff H(s,r,n) holds. O

Another integer that provides interesting links with rational admissibility
of (r,s,n) is denoted by rys. To define it, we go back to the sets
G(K)={a€K*|a=al+...+d}, a;€K}.
We wish to know whether or not there is a value n = n(r, s) such that
Gr(K) - G4(K) = G,(K) for all fields K. We have the following,.

Definition 13.3. Denote by r¢s the smallest natural number t such that
for all fields K, we have

G.-G,CQG,.

Thus by definition (of 0), Go - Gg C G, = apf < 4. We have the
following,.

Theorem 13.2.

(i) ro(s1+ 32) < rps) + 1982

(i1) Letr < 2™ and lett be an arbitrary natural number; then ro(t-2™) <
t-2m,

(iil) G, Gs = Grys

(iv) rgs<r+s-1.

(v) 1958 =¢q-2%4 dor, where r < s and @, A are determined by 2°~! < r <
2% s=¢q-2+ ), (¢20, 1 A <2%).

Proof. (i)

Gy Gsyys, = {2': Z yi + Z )} (neither factor equal to zero)
= {3 Zy, +Z 23 =) (#0)

C G,G,, + G,G,, (0 can occur now)

C Grosy + Gros,

= {1+ .+l )+ 0T+ Hun.,))
(neither bracket equal to 0)

C Grosy4ros, U {0}
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But 0 is not an element of the left side, i.e. of G, - G4, 4s,, so in fact
G- GJ1+32 - G"031+ro-92, ie.

To(81 + 32) < 198y + ToS2.
(i)
G Gram CGym(Gom + ...+ Gom)
CGam-Gam +...+Gam - Gogm
=G +...+Gym
= Gyam U {0}.
But the left side does not contain zero, so
Gr-Gram C Geagm,

hence rgt - 2™ < t- 2™,

(iii) By definition, G, - G, € Gr,s, 50 it remains to show that G, C
G, - G,. Here we may suppose, without loss of generality, that r < s. We
use induction on r. For r = 1 we have, for all s, 195 = s for G, - G, C G,
so 1lgs < s; also G, - G, ¢ G,_, for at least one field K, e.g. K =
R(X,,...,X,), for otherwise X? +...+ X2 would be a sum of s — 1 squares
in K which is false by Corollary 4 of Chapter 2,s0 198 > s—1,1.e. 1p8 > s.
So, for all s, suppose the result is true for all pairs (p,s), p < s, with
p < r and we prove it for the pair (r, s), i.e. we prove that G.,, C G, G,.
Let 2™~! < r < 2™ and divide s by 2™ giving s = ¢-2™ + 1, ¢t > 0,
1 <1< 2™, Then we have the following:
Gros = Gro(t-2"‘+1) - Grot-2"'+rol (by (1))
C Gramiru (by (i)
={al+...+a}m+...+alym +b]+.. .+ 02}
={al+...+aum+(ct+...+ 3L +... +d)},

since Gryi = Gior = G1Gy, by the induction hypothesis (since | < r). Hence,
with ¢2 + ... + ¢ # 0 of course,

a+... +dim
Gro-S:{( . r)[ . +c22 +
magt...tatm
(t —1)2m+1 t2 2 2
d
cd+...+¢ tat +d’]}

={(cf-{-...-{-cz)[a':+...+a':2m+...+df+...+d%]}
gGr'Gt-2m+l= Gr'Ga

as required, where we have used the facts that r < 2™ and G- is a group.
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Finally if ¢ + ... + c2 = 0, then as above
Gros S{al +. . Halpm + (] +... + )(d] +... + dp)}
C Gpam CGyamyy = G, G,.
(iv) It is enough to prove that G, -G, C Gry,-1. We use induction on
T+ s.

Hr4+s=2thenr=s=1,50G,G,=G1G; =G, CGp,ie 141 <1
and so 151 = 1. Now let r, s be positive integers, r + s > 2 and without
loss of generality let r < s. Let m be the least power of 2 such that s < 2™
so that r < s < 2™. Then

G,G; C Gam - Gam = Gam.

If2™ <r+s—1then Gym C G,4,-; and the result follows. So suppose
r+s—1<2™ ie r+s<2™ Sincer < s this gives r < 2™~ < s by the
choice of m.

Hence now

GG, ={(a] +... +a})(¥] +... + )}
={(a]+...+a})(B] + ... + s + Bnryy + ...+ B2)}
={@+... 4B +... +bms)
+(ad +... +a})(Dmoryy ...+ B2}
C Gam-1 + Gr - Gygm-s
C Gym-t + Grys—2m-1-1 (by the induction hypothesis)
C Gam-14r4s-2m-1-1 U {0}.

But 0 is not an element of the left side so G,G, C G 44-1, giving ros <
r+s—1.

(v) Using (i)
ros =71o(g-2% + A) < rog- 2% + oA
< q:2% +rgA by (il)
=¢q-2%+ Aor.
Conversely we shall show that Gg.2a 4,0 C Grys Whence we get the reverse
inequality as required.
We have
(f 4 +02,\)+ B3+ + Brae
= @i+ ur)ef +- 40}
Lt b u{(d o A u)(BE 4+ Brae))
CERET
= (uj+-Fud{ol +o R ol bl 4ot wgga)

y (iii)
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(by ¢ successive applications of the 2%-identity). It follows that
Gro/\+q-2"' - Gr . G/\+q-2° = Gr . Ga - Gros
which proves (v). |

Remark. If 27! < ), it turns out that Agr (in (v) of Theorem 13.2) can
be replaced by 2* so that we get a more satisfactory expression for rgs.
To see this we note that Gye = Gjo-1 - Ga-14; (see Exercise 13.6), which
gives:
Gya C G- G, (since 2°71 < A,2°71 41 <r)

C G2a . G2a (since A< 20,7' < 20)

= Gya
It follows that 2% < Agr < 2% (see after Definition 13.3). O

Theorem 13.3.

(i) ros = spr,

(i1) 1les=s,

(iii) 2p2m = om,

(iv) r <7 = res < rps,

(v) r<2™ =2ro(s+2™) =ros+2™.

Remark. These properties are in fact sufficient to define rys for all r,
s € N. We shall prove this after we have proved the theorem.

Proof. (i) G, G, =G,  G,; so (1) follows.
(il) G1 -G, C G, 50 1gs < s. However, G1G, ¢ G,_; for every field K,
eg. if K = R(X,,...,X,) then by Corollary 4, Chapter 2, we know that
XZ+...+X?is not a sum of s — 1 squares in K; so 1gs ¢ s.
(3ii) Gam - Gam C G2m (Gam being a group), so
gmom < gm,

Here again Gam - Gom ¢ Gam_; for at least one K, e.g. take K =
R(X,,...,Xam), then

(P+0%+ .. 40X +...+ X2n) ¢ Gom;y.
Wyr<r=G,CGrs0G6G.G,CG.G, C Grisyie. Tos < 138 as required.

+oo 24+ 24 )
o)l 4+ d)

+ (@i 4. 424 422
C (GG, U {0}) + (G+Gom U {0})
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C (Gros U{0})(G2m U {0}) (sincer < 2™)
C Grosi2m U {0}

Now since the left side is free of 0, it follows that G,G,y2m C Grgsi2m,
giving ro(s + 2™) < ros + 2™. Conversely, since GG, = Grqs,
Grossom = {21+ ...+ 25, + 4l +... +yin)

={(z':+...+z':)(zf+...+z3)+yf+...+ygm}

2 2
= {(z’ls+...+zf) zf+...+z3+%|'_'ﬂl’l]}

A O 1
c Gr . Ga+2"‘
since r < 2™ so this quotient is an element of Gam C Gy (s +2™). Hence
(ros) + 2™ < ro(s +2™). a

Proof of the Remark after Theorem 15.5. Take for example, 2™~! < r,
5 < 2™; then ros < 2'2™ = 2™, while

ros > 20 (1 + 2™ ) = (207 '1) 4 2™ = 2™t oMl = o™,

S0 Tg8 = 2™, O

Similarly we can calculate exactly the value of rgs for all r, s € N. Pfister
provided the following more direct way to calculate rgs.

Theorem 13.4. Write r — 1 = Y ., r:2', s — 1 = Y5082 in their
binary scale, so that ri,s; =0 or 1. Then -

{ 2isi(ri + 3:‘)2i frp=s=1, ris;=0foralli>1
T8 =

r+s—1 if r;s; =0forall¢,
in particular ros <7+ s — 1 with equality iff r;s; =0 for all 1.

Proof. Define a, A as in (v) of Theorem 13.2, so that

_f0 ifi>a .

“‘{1iﬁ=a—1 @

Write A — 1 = £);2'. Then it follows by the relation between )\ and s, that
_Jsi fi<a .

A‘_{Oifz'zot (&)

Case 1: A > 271, Then s,—; = 1 and the right hand side of the theorem
equals (note that £ = a — 1)

Y (rits)2t =) (ri+ 82" +2°7 (racr +5ac1)

i2a-1 i>a
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=) r2t+ ) s20 42771+ 1)

i2a i2a
=0+ Es.-Z‘ - ES.‘Z" +2% (by (i))
all i i<o
=(s—1)— (A =1)+2% (by (i1))
=q- i + i

as required. (Note that the case “r;s; = 0 for all :” does not occur here
since rq—1 = 84-1 = 1). So, by the remark at the end of Theorem 13.2,

E (7‘.‘ + s,')Zi = T198.

i2a-1

Case 2: A <291 We have in this case

s—1=zs.--2"= Z - 28+ Z 82

all ¢ 1<i<a—1 i>a—1
=A-1+ Z S,‘-2i;
>a—1
hence
Y osi2=s-r=g-2° (iii)
>a-1
So now the right hand side of Theorem 13.4 is
E(T.' +8i)2' = E (rits)2'+ 3 (ri+s:)2"
i>t t<i<a t<agi
Z (7‘.‘ + /\5)2i + Z S,‘2i
t<i<a t<agi
> (ri+si)2' +¢-2% (by (ili) and (ii))  (iv)
o—12i>¢
But now the left hand side of the theorem is ros = ¢ - 2% + Aor (by (v) of
Theorem 13.2), so by the induction hypothesis, since in Case 2, A < 2°7! <
r<sie A<s
{‘1'2°+E;>¢(7‘i+/\i)'2r fre=Ar=1,rA;=0if1 > ¢,
o8 =

g 2" +r+A-1 if 7\ = 0 for all §
=g 2%+ Y (rits)?
t<i<a—1

by (iii) if ro = Ay = 1,72 = 0if ¢ > £ This equals r + s — 1 (since
s—1=¢-2%4+X~-1))if r;s; = 0 for all i. Comparing with (iv), Theorem
13.4 follows. (W

We now prove a few easy consequences of what we have been doing.
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Proposition 1 (Cassels) (cf. Corollary 4, Chapter 2). 1+ XZ+...+ X2
s not a sum of n squares in R(X,,...,Xn).

Proof. Use induction on n. For n = 1, 1 + X? is not a single square in
R(X,). This is trivial. Suppose 1+ X7 +...+ X2_, is not a sum of n — 1
squares in R(X,...,Xn-1) = K say. Thenif 1 + X7 + ...+ X2_, + X2
is a sum of n squares in R(X,,...,Xn_1,Xs) = K(X,), we would get
Xo+(1+X2+...4+ X2_,)is a sum of n squares in K(X,) and so by
Corollary 3 of Chapter 2, since —1 is not at all a sum of squares in K,
we findd = 1+ X2+ ...+ XZ_, is a sum of n — 1 squares in K, which
contradicts the induction hypothesis. a

Proposition 2. Let K be a field with s(K) > n; then
Ga(K(X1,. s X ))SEGni1(K(X1,. .., X))

Proof. 1t is easy to check that s(K (X)) > n too, for if it were not, then
0= fA(X)+...+ f2(X), where by clearing the denominators, we suppose
fi(X) € K[X]. Equating coefficients of the highest power of X to zero
we get 0 = a? + ...+ a2 (a; € K, not all a; = 0), hence s(K) < n, a
contradiction; so s(K(X)) 2> n.

It follows that s(K(X,,...,X;)) > n (for all j). Now as in the proof of
Proposition 1, 14+ X7 +...+ X2 is not a sum of n squares in K(X\,...,X,).
So the element 1 + X? + ... 4+ X2 € Gny but is not in G,. O

Proposition 3. If (r,s,n) is admissible /K, then for any field L D K,
G(L)-G4(L) CG.(L).

Proof. Let
(X2 4.+ XHY2+...+YH =22 +... + 272, (13.4)

Zj bilinear in X, Y; with coefficients in K, be the (r, s, n)-identity assumed
to hold. Let

a=al+...+adl€ G.(L),

b=5b] +...+ b € G,(L).
Put X;=a;, ¥; =5;in (134) (1<i<r,1<j<s)togeta-be Gu(L),
i.e. Go(L)-G,(L)C Gn(L). d

Proposition 4. Let s(K) > (ros) — 1. If (r,s,n) is admissible over K,
then ros > n.
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Proof. By Theorem 13.2 (iii) and Proposition 3, Grys(K) = G(K) -
G4(K) C Gn(K).
Indeed this is true for any field L 2 K:

Gros(L) C Gu(L) (forany L D K) (13.5)

Suppose, to the contrary, that n < rys. By Proposition 1 find a field K’ with
Stufe at least n such that G, (K")GGny1(K'). Since n < ros it follows that
n+1< 168 50 Gup1(K)CGrys(K') and Gu(K')GGrys(K'), contradicting
(13.5). a

Proposition 5 (Kdhnen (1978)). ros < n iff H(r,s,n) holds.

Proof. Let g(r,s) = min (n | H(r,s,n) holds) . We show that g(r,s) =

T9s and to do this we need to check that the function ¢(r,s) satisfies the

conditions of Theorem 13.3. This we verify step by step.

(i) g(r,s) = g(s,r) for min (n|H(r,s,n) holds) = min (n|H(s,r,n) holds) ;

by (v) of Theorem 13.1.

(ii) g(1,s) = min (n|(}) is even for n — 1 < k < s). Now forn = s ~ 1,

k = s — 1 is a value of k for which (:) = (::i) = 11is not evenson > s.
For n = s, the condition is vacuously true, so n = s is the required

minimum n, i.e. g(1,5) = s.

(iii)r < ' = g(r,s) < g(r', 5), since min (n|H(r, s,n) holds) = min (n|(}) is

even for n — r < k < n), and min (n|H(r', s,n) holds) = min (n|(}) is even

for n—r' < k < n). Clearly the second follows from the first since the range

of k in the second is a subset of the range of & in the first.

(iv) g(2™,2™) = 2™, because the left side equals

min (n|H(2™,2™, n) holds) = min (n](Z) is even if n — 2™ < k < 2™)).

Now if n < 2™, the range of k takes negative values which is not allowed
and if n = 2™, then H(2™,2™,n) holds (by Theorem 13.1, (iv)), son = 2™
is the required minimum.
(v) Let r < 2™. We must prove g(r,s +2™) = g(r, s) + 2™. This reduces
to the statement: if k < 2™ then (:) = ("+"2m) (mod 2), which follows
immediately from the remark given after the proof of Theorem 13.1, (iv).

Now rgs = minn such that G, -G, = G,, C Gy for all N withn < N
and g(r,s) = minn such that H(r, s,n) holds, i.e. H(r, s,n) holds for all N
with n < N.

To prove Proposition 5, first let rgs < n, ie. g(r,s) < n. Since
H((r, s, g(r, s)) holds so H(r,s,n) holds.

Conversely let H(r, s,n) hold and let g(r, s) be the minimum n such that
H(r,s,m) holds, so g(r,s) < nie. rgs < n. O



18: The rational admissibility of the triple (r, s, n) 179

Proposition 6. If H(r,s,n) holds, then (XZ + ...+ X2)(Y¥ + ...+ ¥}?)
is @ sum of n squares in L = K(X,,..., X, 11,...,Y,).

Proof. Let H(r,s,n) hold. Then by Proposition 5, rgs < n, so G,,s(L) C
Gn(L) for all fields L (definition of o), so Gr(L)G,(L) C Gn(L) for all L.
Taking L = K(X,,...,Xr,Y1,...,Y,), this says that

(XZ4 ... + X2 (Y4...+ Y2 €Ga(L)

i.e. that the left side is a sum of n squares in L. a
We now come to our main result.

Theorem 13.5. The following statements are equivalent.

(1) H(r,s,n) holds.

(ii) ros <.

(iil) Gr(K) - G4(K) C Gn(K) for every field K.

Furthermore, if K is a field with Stufe K > n, then the following are also

equivalent to (i), (ii), (iii):

(iv) GA(L)-G4(L) € Gn(L) for L = K(X1,..., X, 11,...,Y,).

(v) Thereis a formula (X2 +...+ XIN(Y2+...+Y2)=22+... + 272,
where Zp € K(X,,..., X, 11,...,Y5).

(vi) There is such a multiplication formula as in (v) with each Zy linear
functions of the Y1,...,Y, with coefficients in K(X,,...,X,).

Proof. (i)<(ii) is Proposition 5.
(il)&>(iii): by the definition of ros, G,(K)-G,(K) = Gros(K). Now rgs <
n & Gy 3(K) C Gu(K), so we see that ros < n & G (K)-G,(K) C Ga(K).
(iii)=>(iv) is trivial since L is special in (iv).
(iv)=>(iii): let s(K) = n so that by (iv)
G(L)-G,(L) C Gu(L) for L = K(X;,..., X, 11,...,Y,) (13.6)
and we have to prove that G.(F) - G,(F) C G,(F) for all fields F.
Suppose for some F, G (F) - G,(F) 2 Gn(F). Then ros > n,ie. res >
n+ 1 and so
Grys (any field A) 2 Gay1(A) (13.7)
Now
GAL)-G,(L)=G,,s(L) L asin (13.6))
C Ga(L) (by (13.6))
G Gnt1(L) (by Proposition 2)
which is a contradiction to (13.7). Note that n +1 < rgs <r+s—1, by
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Theorem 13.2, (iv),son+2<r+ssayr+s=n+2+a. Nows(K)=>n
50 s(K(X)) > n and indeed s(K(X},...,X244)) > n. Let
Fl = K(Xl,...,X2+a).
Then L = Fi(X24at1,-- -2 Xr, Y1,...,Y,) (s + 7 — (2 + a) an equation with
n indeterminates). Then by Proposition 2, Gn(L)GGny1(L) as required.
(iv)=(v): this is trivial.
(vi)=(v) is also trivial but we don’t need to mention it here.
It now remains to prove that (v)=(vi)=(ii).
(v)=(vi): K is a given field with Stufe K > n and we are given a formula
X2+ + XY +...4YH) =22 4+... 4+ 72,
Zr € K(X1,...,Xr,11,...,Y,). Put X = X2 +...+ X2. Thus X(Y +
...Y2) is a sum of n squares in the field
K(X,...,. X 1,...,.Y,)=K'(1h,...,Y,),
where K' = K(Xy1,...,X,), i.e. XY2 +...+ XY2 € G.(K'(1h,...,Ys)).
Now, see Theorem 11.8, s(K') = s(k) > n, so Z? +...+ Z2 is anisotropic
/K' and the subform theorem implies that
224 .+ 22~ XY 4.+ XY g
~XYE 4+ XYEMWE A WE
where we assumed, without loss of generality, that ¢ is diagonal. Then
n = s + ¢t and this equivalence means that there exist linear substitutions
(over K'):
Zy=anh +...+ a1 Y, + by o Wi + ..+ by o W
Zy =anVi+...+a,Y, + by Wi + ...+ b2 s W,
Zp=amV1 +...+an,Y, + bn,a+lWl +...+ bn,a+tWt

ie.
Y,

Z 5
(£)=[AIB] w |
Z, :

W,
(where A, B have n rows, A has s columns and B has t columns), taking
the form ZZ +...+ Z2 to XY +... + XY2 + \WZ +...+ W2 So

Z)
Zf+...+Z,2,=(Zl,...,Z,.)( : ) =
Zn
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Y,

A’ Y,

=(M,....Ys Wi,..., W, AB | 2

(i VoW W) () (18 |

W,

e
Y,
- [A | B] Wl ’
W,
n
X1, 0 :
Al Y.
=(Y'1,~-.,Y;,W1,-.-,Wt) W;l
0 Ae :
W,
It follows that
XI, 0
A'A A'BY _ A1
B'A B'B)
0 A

and so in particular A'4 = X I,.
Now we have

(X24 ...+ XHYVE+.. . +Y)=XW,...,

/‘\
&S

Y

—

= (Yi,...,Y,)XI,

)
)

o e R

= (%iy..0, V)A'A

Zy
=(Zl,""Zﬂ)( :
Zn

Af\

I
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Z n
(; :A(; =Z}+...+ 2%
Zn Y,

Thus Z; are linear forms in Yj,...,Y, with coefficients in K' =
K(X,,...,X,) as required.

Finally we prove (vi)=(ii): we are given a field K with Stufe K > n and
a multiplication formula:

X+ .. +XD)YE+... +YH) =2 +... 4+ 2%,

where Z) are linear functions of the Y),...,Y, with coefficients in
K(Xy,...,X,;). We have to prove that rgs < n. For this it is enough to
prove that Gry,(F) C Gu(F) for the field FF = K(t,,...,ta), for once this is
done, then by Proposition 2, Gn(F)SGus1(F), i.e. Gros(F)GGni1(F) and
so clearly ros < n + 1. In other words, ros < n as required.

Now pick any B8 € G,(F), i.e. B =0+ ...+ (bj € F). In the
multiplication formula given above, since each Zy is linear in the Y;, we can
substitute b; for Y; to obtain

X2+ +XHB=22+...+2% (Z;€F(X1,..., X))

ie. BXE+ ...+ BX2€G.(F(X1,..., X))

Now s(F) = s(K) > nso W? +... + W2 is anisotropic /F and so by the
subform theorem

WZt+. +WinfBX24. .. +BX2@®g (over F).

Hence 8- G, (F) C Gn(F). Since this is true for every 8 € G,(F), it follows
that Go(F) - G (F) C G,(F), 1.e. Grys(F) C Gn(F) as required.

This completes the proof of Theorem 13.5. O

where

Finally we have a very beautiful theorem of Shapiro. Let n = 2™. Then

in the n-square identity
(X2 . + XD+ +Y)Y =22 +... + 22

we know that Z; may be taken as linear functions in the Y;’s with coefficients
in K(Xy,...,Xn). Here Pfister has noted that Z; can also be taken linear in
the X;’s as well; in fact he takes Z; = X1 Y1+...4+ X, Y, (see Chapter 2, just
before Theorem 2.3). This raises the question of how many more of these
Zi can also be taken linear in the X;’s too. The answer is the following.

Theorem 13.6 (Shapiro - 1978). Suppose n = 2™ and let K be any
field. Then in the n-square identity

(Xi4+ .. + XDV +.. . +YH =224 +22 (13.8)
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with the Zy’s linear in the Y;’s with coefficients in K(X,,...,X5), the
Zyry .-y Zy can also be taken linear in the X;’s iff r < p(n), the Radon
function.

Proof. Before giving the proof we note that in (13.8) above we can easily
arrange a formula where 8 of the Z; are bilinear (when n > 8). To do this
start with the known (8,8,8) bilinear identity and apply the “doubling”
process given in Pfister’s theorem of Chapter 2. Indeed write the 8-square
identity twice over, once for the variables X,,..., X3; Y3,...,Y3; Z1,...,Zs
and once for Xy,...,X16; Y9,...,Y16; Z9,...,2Z16. Thus

Zy

Xo —Xio —Xu —Xi2 —Xiz —Xu —Xis —Xie\[ Yo
Xio Xo X2 X —Xuu X Xie —Xus || Yo

Xie Xis X Xz X1z X X X Y;s
(simply read off the identity (1.3)); say Z, = 5,Y, and Z, = S;Y, for

short. Then
Z\N_(S S Y,
Z,) = \s -ssis ) \x,

by Pfister’s Theorem 2.1. We see that Z,,Z,,..., Zs are bilinear in the X
and the Y; as claimed. The process can be repeated for 32,64, ... variables;
the 8 bilinear terms will persist.

But of course even for n = 16, Theorem 13.6 is stronger than the above
method as it gives us nine fully bilinear terms.

This problem was posed by Baeza and solved by Shapiro in a letter to
Baeza in 1976.
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To prove the theorem recall that the fully bilinear identity
X2+ + XDV +...+Y)=(Z2+...+ 22) (13.9)
is equivalent to the system of Hurwitz matrix equations.
Write Z = AY. (where Y,Z are column matrices and A is an n X s

matrix whose entries are linear forms in X,,...,X,). The composition
formula (13.9) becomes

from which we get (see above (10.2))

,
A'A = (E X}) I,.
1

Now write A = X, A;+...+ X, A, and we get the Hurwitz matrix equations.

The same argument applies to Pfister type composition of size n x n, but
now A is allowed to have entries in K(X,,...,X,), the function field of
rational functions over K.

Now suppose there is a Pfister composition for n squares for which
Zy,...,Z, are linear in the X,,..., X, also. Then we have an n x n matrix
A satisfying

A'A = (ix}) I, (13.10)

where A has entries in K(X,,...,X,) and where the first r rows of 4 have
entries which are linear forms in X,,..., X,.

Write A = (-]—%) in blocks, where L is the r X n linear part and N the
(n — r) X n remaining part. Expanding the formula (13.10) for A, we get

L'L+ N'N = (Zx}) In
1

which is not useful. However we also know that

AA* = (ix}) I.. (13.11)

To see this, note that since A is non-singular, we may multiply (13.10) by
A~ on the right and (A!)~! on the left to get

ety () o (55
1 1
giving (13.11).
Then

L LL* LN
t_ tATEY
Adt= (N)(LN)_ (NL‘ NN‘)
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I. 0
0 Inr

LL' = (i:xf) I,
1

and the n x r matrix L' fulfills the Hurwitz condition for a composition
formula of size (n,r,n). But the “r” and
obviously interchangeable; so we get an (r,n,n) formula and applying the
Hurwitz-Radon Theorem (Theorem 10.1), valid for any field K with char

K # 2, we conclude that

and this equals (} 7 X?) ( ) It follows that

“s” parts of a composition are

r < p(n).
Conversely we need to construct Pfister identities for n = 2™ squares having
r = p(n) bilinear terms. To do this we need the following matrix-theoretic

Lemma. Suppose B; is an n X r matriz over a field F, with BIB, = uI,.
Then we can enlarge By to an n xn matrizc B = (B,|B;) (B; annx(n—r)
matriz) such that B'B = ul,,.

Proof. The condition B} By = pl, simply means that the r columns of B,
form a determinant of r mutually orthogonal vectors in F™ each of “length”
p. Write
By = (b, by,---,4,)
so that the b; are orthogonal n x 1 column vectors. By the Gram-Schmidt
process, we can find columns ¢, ,,...,¢, such that the complete set
.b.17 e 7_br7.c.r+1) e ,_C_"

is a linearly independent set of orthogonal vectors.
Let M = (by,...,8,1Cr41++--,¢n = (B1]|C) say. Then

B} B!B, BiC
t . 1 _ 11 1
MM—(Ct>(31IC)—(C,Bl ctc>'

But M*M is a diagonal matrix, the columns of M being orthogonal vectors;

say M'M = (MOIT g) (note that BB, = ul,) where

D = diag(d,4a1,...,dn) (d; #0).
Hence BiC = 0 and C'C = D. Further
X2+ +X2~pXi o+ p X de X+ dazl
via the transformation X = M X. But n is a power, 2™, of 2 and so the form

X?+...+X? is the Pfister form {(1,1,...,1)); we know from Theorem 12.3
that it is “round” i.e. that X2 + ... + X2 ~ u(X? +... + X?2). Hence

X2+ + X)) dep 1 X2+ oo+ da X2~ p(XE 4.+ XD,
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Cancelling, by Witt’s cancellation lemma (Theorem 11.3) we get
depr X2 + .+ dn X2~ p(X2 0 + ..+ XD).
Hence there exists a non-singular (n — r) X (n — r) matrix U such that
U'DU = ul,_,
and then we have
B!
(BrlcvY(B:iov) = ok, ) (BilCV)
_( BiB BiCU
—\uc'B, U'C'CU

_ ( ulr 0
“\ 0 U'DU

~(Hr 0
‘(0 uI,.-,)"""

and taking B, = CU completes the proof of the lemma. O

Now return to our bilinear terms construction. Let n = 2™, r = p(n).
Since there is a bilinear composition of size (r,n,n), there is one of size
(n,r,n) and we find an n X r matrix B, whose entries are linear forms in
X1,...,X, satisfying

B!B, = (Z X_?) I,.
1
By the lemma above, there exists B = (B4|Bz) over F = K(X,,...,X,)
with B'B = (3.} X2)I,. Again since Y 1 X7 is a non-zero ‘scalar’, we have

BB! = (2": X?) I,.
1

Now use the matrix A = (%) where A = B!, L = B, N = B} to give a Pfis-
ter composition for n squares for which Z,...,Z, are linear in X,,..., X,
too. a

Exercises
1. Prove a result similar to Theorem 13.6 for the m-fold Pfister forms that
is set
Qal,...,am = Qm = ((al,az, e ,am)),
be the m-fold Pfister form over a field K, and let n = 2™. Then in the
identity
Qal,...,am(xl; e ,Xn) . Qal,...,am(Yly e ;Yn)
= ¢a.l,...,a..,,.(zl, ceey Zn),
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where Zy,...,Zn(€ K(X,,...,X,)[Y1,...,Y,]) are all linear forms in the
Y;, we can make the Z; linear in the X;’s too if and only if k¥ < p(n).

We give below certain definitions followed by exercises related to them.
These will come in handy when some of Lam’s [L1] or Adem’s [A2] con-
structions of normed maps are to be understood. These normed maps lead
to exciting (r, s, n)-identities.

Definitions. A mapping f: K" x K* — K" is called
(i)  bilinearif for a,a’ € K", b,b’' € K*, we have
f(a,b+b') = f(a,b) + f(a,b’) and
f(a+a',b) = f(a,b) + f(a',d).
(i1) non singuler if f(a,b)=0=>a=0o0rb=0
(ii) normed if ||f(a,b)||?> = ||a]|? - ||b]|? for ail a € K",b € K*, where if
X =(X1,...,Xm) € K™, then the norm [|X||? of X is defined to be
X+ X2+ +X2
(iv) bi-skew if
X, Y)=f/(X,-Y)=—-f(X,Y)forall X € K", Y € K°.

We have already defined r,s to be the least n for which the triple (r,s,n)
is admissible over R (see Chapter 10).

(v) We define r#s to be the least n for which there is a non-singular
bilinear map f: R" x R* —» R™.

2. Prove
(i) If f is normed then f is non-singular.
(ii) The triple (r, s, n) is admissible over K if and only if there is a bilinear
normed mapping
f:K"x K-> K".
(iii) f bilinear = f bi-skew (Hint: 0= f(X,0)= f(X, Y -Y) = f(X,Y)
3. Prove that
(1) max(r,s) <r#s <rés
(il) (r+71)es < (res) +(r,s)
(i) (r+r")#s <r#s+r'és
(iv) r#s<r+s-1

Hint: If f :R"xR* > R" g :R™” xR* — R™ are bilinear maps, define the
direct sum

h:R™" xR* - R
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by h((X,X"),Y) = (£(X, Y),g(X', Y)).

If f, g are non-singular, so is h and if f, g are normed, so is h. This proves
(i1), and (iii) is similar.

For (iv), define f(X,Y) : R" x R® — r + s — 1 as the coeflicients of
1,t,%%,...,t"t*"2 in the product

(5xe) (50)

4. Prove that the map R? x R2LR? (got from multiplication of complex
numbers) given by

f(X1,X2), (1, 12)) = (i1 = XaoY3, XYz + Xo1h)

is bilinear, bi-skew, non-singular and normed.
Show similarly that the maps got by multiplication of quaternions and

in the ring R[t].

octonions are also non-singular, bilinear, bi-skew and normed.

5. By definition r#s < nif there is a non-singular bilinear map f : R"xR* —
R". In particular if (r,s,n) is admissible R then r#s < n. Prove that

if (r,s,n) is admissible C (a weaker condition than admissibility R) then
r#s <n.

Hint:  (r,s,n) admissible C = the existence of a formula (X? + --- +
X2)Y2+---+Y2) = Z2+---+2Z2, with Zj bilinear in X;, Y; with coefficients
in C:

r

Zy = Eia.-,-)(.-)’,— (aij € C).

i=1 j=1

Writing a;; = a;j + /—1 b;j we see that Zy = ug +/—1 vy whereuy, vi are
bilinear in X;,Y; with coefficients in R. Now comparing real parts in the
(r, 3, n)-identity we get

X4+ X0+ + V) =ui =i+ tul —vp (%)

Now define the map f : R" x R* = R" by
flar,...,ar;b1,...,85) = f(a,b)
= [u}(a,b) — v¥(a,b),...,u%(a, b) — vI(a,b))]

and check that f is bilinear and non-singular (use (*)).

6. Prove that if G, is a group. That is, if n = 2™, then
GnGn+l = G?n;
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we have
(uf +- -+ ul)(uiy, + 0 +ud,)
(uf +o - +ul)?

uj 4o tug, = (i up) |14

€ GnGn+17
and conversely we have
(4 4+ E)OF o+ 1) = (0 oo+ )0 o)
+(u] + - Uil
€ Gaq.

7. Define
T, = {a € K| a is a sum of at most m squares in K}
=G, U{0}.
For integers m,n > 0, show that there is a function
moen = Ngm

with the property that ', (K).T'n(K) = Tmon(K) for all fields K. (Follow
the steps given below.)
(I) 2§2* = 2* (this is just Pfister’s theorem).
(II) Suppose that 2! < m < 2+ 2t « n < 2!*! for some ¢. Then myn =

2t+1,
(ITI) Suppose that m < 2! < n for some ¢ and that me(n — 2*) is already

known. Then mon = mo(n — 2) + 2.
(IV) Now use induction on m + n to define mgn as required.

Remarks:
1. The equality in Exercise 7 makes two assertions:

(a) Given u € T'n(K),v € Ty(K), then uv € T u(K)
(b) Given w € Iypon(K), there are u € T (K),v € Tp(K) such that

w = uv.

2. There are fields K (e.g. R(t1,12,...,t;,...)) where the ¢ are independent
variables, such that the I',(K) are distinct. Hence mgn, if it exists, is
certainly unique.

Hints:  For (II) first let w € I'y,v € T,. Then u,v € Tyesr and so
uv € Iyeqs, by (I).

Next let w € Ppean. fw =0, we have w =0-0,0 € T',,,I',. Otherwise
w = u + &, where u,z € 'y, u # 0. Then, by (I),

y==z/u=zu/u? € Ty.
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Hence v (say) = 1+ y € I'z¢41, and
w=uv;u§F2: Cln, U€F2¢+1 c’rl,
as required.

(I1I). First let u € Ty, v € Ty. Then v = vy + v, where v; € T'(n — 2%),v, €
T2, and uv; € Typy(n—2t). Also u € 'y C T't; s0 uvy € T'ye, by (I). Hence
uv = uvy + uvg € Fmo("_zl) + Iy

= Tmo(n—2t)42¢
Conversely let
w € Trp(n—2t)42¢
If w = 0, there is nothing to prove. Otherwise w = w; + w,, where w; # 0,
wy € Tmg(n—2t), w2 € T'y:. Then w; = uv, where u € I',,v; € T',,_ye. Put
vy = wy/u = wyufu?®. Since u € Ty, C Iy, wy € Ty, we have vy € Ty
Then w = u(vy + v2), where vy + v, € T'i_ge + Ty = T',, as required.
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Some interesting examples of bilinear
identities and a theorem of Gabel

If we wish to find the quadratic forms ¢(X) which satisfy the identity

«(X)(Y) = 9(2)
where the Z; € K(X,Y), then we have seen in Chapter 12 that two essen-
tially different cases arise:

I. ¢ is anisotropic. In this case ¢ is of necessity a Pfister form and we know
all about the identities satisfied by them.

II. ¢ is isotropic. In this case ¢ ~ a hyperbolic form and apart from the
two cases

(a) ¢g~H=X:X,

(b) qﬁ’2H=X1X2+X3X4,

we have not looked at any further forms and the identities they satisfy. The

first new case here is the 6-variable one (the first time not a power of 2).
Solet g ~3H=XX; + X3X4 + X5X¢, then

«X)- oY) = ¢(2),
where
Zy = Xo¥h + XaYs + XsYs,
Zy = X1 Yy + X Y3 + XeYs,
X3Ys — X5Y3> ’

Za=X2Ya—X3Y2"Xs( X,
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Zy = X1Yy — X411,
Z5=X2Y5—X5Y2+X4(
Ze = X 1Y — XeT1;

X3Ys — X513
X1 ’

This has 4 bilinear terms.

We have the three classical 2-, 4-, 8-, identities and we know that the
16-identity fails as a bilinear identity. We have already remarked that the
minimum value of n for which (16, 16, n) is admissible (over R) is not known
to date. Trivially, of course, n < 32 (use the 8-identity four times). However
the maximal r for which (r,16,16) is admissible is, by the Hurwitz-Radon
theorem, equal to 9. We thus have the following identity giving the admis-
sibility of the triple (9, 16,16):

(XE+X2+. .+ XD+ 4. +YE) =21+ 22 +... + 2%,
where

Z1=X1 Y1+ X2Yo+ XaYa+ XaVa+ Xs Yo+ Xe Yo+ X7 Y72+ XY+ Xo Yo
Zy==Xo1+X1Y2+ XqYs—XoYa+ XeYs - X5 Yo —Xa Y7+ X7Ys + X9 Y10
Za==X3Y1 ~X,Yo+ X1 Ya+ X2 Y+ X7Ys+ X Ye— X5 Y7 — Xe Yo+ Xo Y1y
Zy==~Xa 1+ X3Yo— X2 Va+ X1 Yo+ Xa Vs —X7VYe+ Xe Y7 —Xs Yg+XY12
Zy=~Xg Y1 =XYoo —X7Ya—XgY4+ X1 Ys+ X2 Yo+ Xa Yo+ X4 Ye+Xo Y13
Ze=—XeY1+XsYo—XgYa+X7Ys—XoYs+ X1 Ye—Xa Y7+ XaYas+XoY14
Zr== X714+ Xg Yo+ X5 Ya—XeYa—XaYs+ X4 Yo+ X1 Y1 — X2 Ya+ Xo Y5
Zg==XgY1~X7Y2+ X Y3+ XsYs—X4Y5— X3 Yo+ X2Y7+ X, Ys+ Xo Y16
Zog=—-Xo Y1+ X1 Yo~ X2Y10=X3Y11 - X4 V12— X5 Y13 —=X6Y14— X7Y15-Xs V16
Zro==Xo Y2+ X2 Yo+ X1 Y10~ Xa Y11+ Xa V12— X6 Y13+ Xs Y14+ XsY15s ~ X7 Y16
Z1=—XoY3+X3Yo+ XaY10+ X1 Y11 — X2 V12— X7Y13 - Xg Y14+ Xs Yis+ Xe Y16
Zy2==Xo Y4+ X4 Yo~ X3 Y10+ X2 Y114+ X1 Y12~ Xg Y13+ X7Y14 = Xe Y15+ X5 Y16
Z13==X9Ys+Xs Yo+ XeYio+ X7 Y11+ XeY124+ X1 V13— X2 V14— X3 Y15~ X4 V16
Z14=—X9Ys+XeYo— X5Yi0+XaY11=X7Y124+ X2 Y13+ X1 Y14+ X, Y15 — X3 Y16
Z1s=—Xo Y1+ X7Yo - XgYV10~Xs Y11+ X6 Y12+ X3 Yia — X N4+ X Y154+ X, Y16

Z16=—X9Ya+XeYo+X7Yi0—Xe Y11~ X5Y124+ X413+ X3Y14—X2Yis+ X1 Yie

or in the matrix form the following: Z = AY (Z, Y columns), and the
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16 x 16 matrix A =

(7

-X,
— X3
- X4
- Xg
~Xg
— X,
—Xs
- X,
0

o 0O O o O o

\

X, Xa X4 Xs Xe¢e X7 Xe Xo O 0 0 0 0 o\
X1 X4 —-X3 X¢ —X5—Xs X7 0 X9 O 0 0 ] 0
—-X4 Xy X2 X1 Xs —Xs —-Xg 0 0 X, 0 0 0 0
Xz —X2 X1 Xs —X7 Xe —Xs 0 O 0 X9 O 0 0 0
—Xe —X7—-Xe X1 X2 Xz X4 0 O 0 0 X O 0 0
Xs —Xs X7 —X2 X, —-X4 Xs 0 0 0 0 0 Xy O 0
Xe Xg —X¢—Xz Xq X2 —X20 0 0 0 0 0 X, O
—X7 X¢ X5 —X4—-Xas X2 X, 0 O 0 0 0 0 0 X

0 0 0 0 0 0 0 X; —X2 —X3 —Xq —Xpg —Xe —X7 —Xs

~Xs O 0 0 0 0 X2 Xy —X4 Xs —Xe¢ X5 Xe —Xz
0 —-Xp O 0 0 0 0 X3 X, X) —-X2 —X7-Xsg X5 Xsg
0 0 —Xp O 0 0 0 X4 -Xa X2 X, —Xs X; -Xe Xp
0 0 0 —-Xy O 0 0 Xs Xe X7 Xsg X1 —X2 —X3 —X,
0 0 0 0 -Xps 0 0 X¢—Xs Xe —X7 X2 X1 X4 —Xa
0 0 0 0 0 —-Xo 0 X7—-Xe—-Xs Xs Xs —X4 Xo X,
0 0 0 0 0 0 —Xp Xg X7 —Xe —Xs X¢ Xz —-X2 X,

The beauty of this formula is, I think undisputed.

At the end of Theorem 14.1, we have explained how this (9, 16, 16) identity
can be derived from Theorem 14.1.

Another interesting identity promised in Chapter 10 is the (10,10,16)
bilinear identity given by

X4 + XY +...+ Y =2 +.. .+ 23,

where the Z,,...,Z¢ are given by the following (note that it is known that
10 * 10 = 16 (see Remark 2.10, page 243 of [S6])):

Z)=X1Y1~X2Y2~XaYa—XaYe— XsYs— X6 Yo —X7Y7—XsYs— X9 Yo —X10 Y10
Z2=X1Y2+ X Y1+ XYy — X4Y3+X5Ye—XeYs — X7 Ye+ Xs Y7+ XoY10—X10Yo
Z3=X1Y3+XaY1—X2Ys+ Xe Y2+ XsY7—X7Ys+XeYs—XaYe
Z4=X1Y4+ X1+ X2Ys— XaYo+ XsYe—XsYs—Xe Y7+ X7Ys
Zy=X1Ys+Xs Y1 —X2Ye+ X6 Ya—X3Yr+ X7 Y- XqYs+XaY,
Ze=X1Ye+ Xe Y1+ X2 Ys - X5 Yo— X3 Ys+ X Y3+ Xy Y7 —X7Y,
Zr=X1Yr+ X+ X2 Y~ Xa Yo+ XaYe - X5 Ya— X Yo+ X6 Y4
Zg=X1Ys+XaY1=X2Y74+ X7Y2+ X3Ys —XeYa+ X4 Y — X Ys

Zy=X1Ys+ Xo Y1 —X2Y10+ X10Y>

Zro=X1Y10+ X101+ X2Yo - X Y2

le=X3Y9—XgYs—X4Y10+X10Y4

Zy2=X3Y10—X10Ys+XqYo— XY,

Zy3=X5Ye~XoYs—Xe Y10+ X10Ys
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Z14a=XeY10—X10Ys+XeYo—XoYs
Zys=X1Yo—XaYr+XsYi0—X10Ye
Zre=—X71Y10+X10Y7+XsYo—XoYs
In the matrix notation, this becomes Z = AY,, where Z, Y are column
vectors with 16 and 10 components respectively. We have written out A

below in full for the readers to appreciate and, as for the (9, 16, 16) identity,
we would like to say where this (10, 10, 16) identity comes from.

X1 —-X» —-X3 —-X, —-Xs —Xe¢ -—-Xr —Xs ~Xo —Xjo \
X2 X1 —Xa X3 —Xe¢ Xs Xs -X7 =X Xo
X3 X4 X1 -X; =-X; =X Xs Xe 0 0
X4 -X3 X2 X, ~Xs Xz —Xe X 0 0
Xy Xe Xy Xg X, -X; -X3 -X4 0 0
Xe -Xs Xg -X7 X2 X X4 - X3 0 0
Xz —-Xs —Xs Xe Xs —-X4 X1 X2 0 0
Xg X7 -Xe - Xs X4 Xs - X3 X, 0 0
Xo X0 0 0 0 0 0 0 X1 -X.
X6 —Xo 0 0 0 0 0 0 X2 X,
0 0 - X X0 0 0 0 X3 - X4
0 0 - X0 —Xq 0 0 0 0 X, X3
0 0 0 0 - Xgq X10 0 0 X5 —Xs
0 0 0 0 -X10 —-Xo 0 0 Xe¢ X
0 0 0 0 0 0 - X —Xi0 X7 Xs
0 0 0 0 0 0 Xio — X Xs -X7 )

The identity can be squeezed out of Theorem 1(iv) of K.Y. Lam’s paper
[L1]. In the notation therein, take

u = (X1, X3) = (m1ug + azu; + ... + agur, agug + ayou;)
€ K2,
where we restrict the element X, of K to the subspace C of complex numbers
of K. Similarly take
v=(Y,Y2)

= (Pruo + ... + Bsuz, foug + Prowr).

Then
f(u,v) = (2191 — Y22, Y221 + 227), Z2Y2 — Y222)

= (21y1 — §222,Y221 + 22%;,0) (*)

since z,, y € C and so commute.

Hence the image f(u,v) € K? rather than K®. Now multiply out the
Cayley numbers in (*) to give

flu,v) = (riup + ... + raus,riug +... +rguz).



14: Some ezamples of bilinear identities and a theorem of Gabel 195

If this bilinear f happens to be norm-preserving then we would indeed have

(e +---+af+ag +alo)(B +-- Bf + 65 + Bho) =
NA o ER AR

As it turns out, f is norm-preserving, although Lam does not say so any-
where (in fact not all the maps (i)—(viii) seem to be norm-preserving; for
example (i) is not for otherwise it would give a (16,16, 23) bilinear iden-
tity contradicting the fact that 16 *z 16 > 25 mentioned in [Y1]; indeed
16 xz 16 > 29). Changing the notation to x,y,z we get the required
(10,10, 16) identity.

Note that [Y1] also gives a method of getting the identity (10,10,16).
For the convenience of the reader we give here the multiplication table of
Cayley numbers.

uy Uog Uz Uy Us Ug uq
Ul —Ug us —~Us Uus —Ug4 —Uu7 Ug
Ug —Uusg —UuQ (73] Ug u7 —Uy4 —Us
Ug Uo —Uy —Ug u7 —Ug Us —Uy4
Uy —Us —Ug —Uu7 —Ug Uy Ug Ug
Us Uyg —Uu7 Ue —U) —Uop —Us Ug
Ug uz Ug —Us —U2 Us —Ug —U,
Uq —Ug Usg Uy —Uusg —Uq Uy —Up

The ug above acts like 1 so that uou; = ujug = u; (7 = 1,2...,7). See
(A5], p.137. Finally note that this (10,10, 16) identity apparently goes back
to Kirkman over 140 years ago! See [K35].

Although there is an (8,8, 8) bilinear identity, there are rational (8,8, 8)
formulae too. For example the “doubling” process (see Theorem 2.1) gives
us such a formula and as an example we derive a (4,4, 4) identity here. By
the (2,2,2) identity we have

LY _ (X1 X, hy_,ofh
(2)-(% %) (3) =10 (3) we
Zs\ _( Xs X, Y; e Y,
Zy) T\ =Xy X Ya) Y,

in the notation of Theorem 2.1. Then by Theorem 2.1 we have

Z] Yl
1z | _ TV T@) ol oo
Z=1z]"= (Tm x Jwn|=T

Z4 Y,
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say, where

X = 7@ 7 ) @)

C(Xs =X\ (X -X2\ ([ Xs X,
- X4 Xa X2 Xl "X4 Xa )

Simplifying, we can get T explicitly as

X1 X Xs X4
X X, -X4 X3
T=| x. x, XuXi-XD+2XaXaX4 X2(X3-X2)+2X)1 X3 X4
3 4 “(XI¥XD) —(XI+XD)
—X, X. XaXI-XD-2Xi1XaXs Xa(X3-X)+2X5XsX4
4 3 —(X24XD) —(X3+XD

and the four quantities Z,, Z5, Z3, Z4 can be written down immediately. It
is a formidable exercise to verify directly that for these Z,,2;,Z;,Z, we
have indeed

(X3I+ X2+ X2+ XDV +YF+ Y+ Y =22+ 2 + 25 + 22

where

Z, =X + XoYe + XuYs + X, Y,

Zy = -Xoh + 1Yo — Xy Y3 + XY,

Xl(XZ—X2)+2X2X3X4

Z3=X3Y'l +X4}/2—( 3 Xg4+X42 Y?i
Xg(XZ —X§)+2X1X3X4
- Y,

X2+ X:

2 2
Zo= XXy + XsYs - (X2(X3 X)g“l X§X1X3X“) s
()(1()(32 - X3+ 2X2X3X4>
- Yy
X2+ X:
Theorem 2.1 tells us precisely this, of course: but still one feels the urge to
recheck one’s formulae.

The beauty of this formula is, no doubt diffused on account of the exis-
tence of the much simpler bilinear (4, 4,4) formula.

We give one more identity, the (12,12,26) one. Its beauty is that by re-
striction, it gives the (10,10,16) identity. Writing X =(X,, X2,...,X11, X12)
as a row vector, we have

(21,2,,...,226) = (X1, X2,..., X12)A(Y),
where A(Y) is the 12 x 26 matrix given opposite. Putting X;; = X2 =
Y7: = Y12 = 0 in this we get
(Zl, Zg, ces ,le) = (X], e ,X]o)B(Y)
where B(Y) is the 10 x 16 top left hand corner minor of A(Y). This gives
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(Y, Y, Ys Yo Y5 Yo Y2 Ys Y5 Yio ©¢ 0 0 ©0 ©0 0 Y, Y, 0 o0 o© o o0 o o o0
Y -Yh Ys -Ya Yo -Ys-Ys Yy Yio -Ys 0 06 0 0 ©0 0 Yy, -Ynn 0 0 0 o o o 0 0
Ys -Ya-Y1 Y2 Y» Ys -Ys-Ye 0 0 Y5 Yio 0 0 0 0 ©0 O -Y -Y2 O 6 o o 0 0
Y Vs -Y2-1 Y3 =Yz Yo -Ys 0 0 -Yy if, 0o o0 o 0 0 0 Yy =Y, O 0 0 0 0 0
Ys —Ys ~Y7-Yg-Y; Y2 Y3 Yo 0 0 0 o0 Y, Yo 0 © O © 0 0 -Y;;-Y;2 0 0 o 0

A Yo Y« -Ya Vs -Y2~-¥1 -Y, ¥a 0 0 0 ©0 -Y,oY» 0 0 0 © 0 0 Y2 =Y, 0 O ()] 0
Y7 V5 Y5 -Ye-Ys Yy -7 -Y2 0 0 © 0 0 0 Yo -Yio 0 O 0 ()] ()] 0 Yy Y2 © 0
Ye ~Ys V3 Y -Ya Ys Y2 -V 0 0 © 0 ©0 O Yo Yo 0 O 0 0 0 0 Y =Y, © 0
Yo=Y 0 0 0 0 0 o0 -Y; Yo -Ys =Y, —-Ys —-Ye -Y7 =Y © 0 0 0 0 0 0 0 Yy ~Ya
Yo Yo 0 0 0 06 0 -Y;-Y, Y, -Ya Yo -Ys-Ys ¥z 0 0 o o ()] 6 0 0 Y2 —-Yn

0

0 (1} [} 0 (1} 0 [} [} 0 - Y Ys Ye Ys Ys ~Y7 Ys Yo Yo

0
Yu ~-Yi2 0 0 [} 0
0

\Yu Yu (1} 0 1] 0 0 0 0 1] 0 1] [1] 1] 0 -Ya - -Y, Y» Yo Ys —-Yg -Y; =Yy Y5
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the (10,10,16) bilinear identity mentioned before with some minor sign
changes.
In all the previous examples of bilinear identities, we notice that the

bilinear functions

Zy = E z ai; X;Y;
have all the a;; integers, whereas they are supposed to be only in the ground
field, in our case (Chapter 10), the real numbers. It is a remarkable fact
that we can always choose the a;; to be integers; indeed they can be chosen
to be +1 (or zero of course in which case the term is no longer written).
This is the content of the following.

Theorem 14.1 (Gabel (1974)). Let n > 1 be an integer and let p be
an integer such that 1 < p < p(n). Then there exist n bilinear forms Z,,
Zay.o oy Zn tin X1,...,Xp, Y1,..., Y, with integer coefficients such that

P n n
(2 (5w)-2a
i=1 7=1 k=1
Further these bilinear functions can all be chosen with coefficients £1.

Remarks.

1. The two special properties of the ring Z viz.
(a) 22m=0=>m=0(mel)
(b) al+...4+a2=0=>a1=a;=...=a, =0 (a; €2).
are used in the proof (see Lemma 1). If R is any ring in which (a) and (b)
hold, then Gabel’s theorem will be true in R.

2. Gabel calls the theorem the Integral Version of the Hurwitz-Radon-
Eckmann theorem. Eckmann [E1l] gave a group-theoretic proof of the
Hurwitz-Radon theorem in 1943.

We now prove a series of lemmas; the theorem will follow from these.

Lemma 1. Let p and n be integers satisfying
1<p<n
The following five statements are equivalent.

(1) There exist p n x n matrices A,,..., A, over Z, such that
(a) AiAt =1, (i=1,...,p)
(b) Al + 4,41 =0 (i # ),

(2) There ezist n p X n matrices By,...,B, over Z, such that
(a) BiB{=1I, (i=1,...,n)
(b) B;B} + B;B} =0 (i #j),
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(3) There ezist p— 1 n x n matrices Cy,...,Cp_1 over L, such that
)CiCi=1I,(i=1,...,p—-1)
(byC?=-I, (i=1,...,p-1)
(c) CiC; +CJ‘C,' =0( #7),
(4) There ezists a p x n matriz T over Z[X,,..., X,] such that
(a) the top row of T is X, Xo,..., X,
(b) TT* = (3} X7) I,
(5) There exist n bilinear forms Zy,Z,,...,Zn with coefficients in Z in
the variables
X1, X2,..., X, 1N, Y,,..., Y,
such that

X3+ + XD+ +Y)=2Z+... + 2.
Thus to prove (5) it is enough to prove any of (1), (2), (3) and (4).

Proof. (1)=(3). Put C; = A;11 4} (1 <i < p-1). We check the conditions
(a), (b), () of (3):

a
=) CiC{ = Ain Al A1 AL,

= Ain I Af,, (by (1a))
I, (again by (1a)).

b
®) C} = Aim AlAip A}

= -A1 A}, A AL (by (1))
=-A 1, A}
=-I,.

Cc
(<) CiCj + C;Ci = Aip1 AL Aj 1 AL + Aj AL A Al

= —AindiA Al - AjnATAlAL
= —(Ain Al + 414L0)
= Q.

(5)=(1). We have done this in Chapter 10 in the transpose notation. In the
present notation we are given (X7 +...+ X2) (Y2 +...+Y}) = Z} +.. .+ Z3.

Write (Z,...,2,) = (Y1,...,Y,)A where A is an n X n matrix with
entries linear forms in X,..., X, with coefficients in Z. Then

Yl Zl
(X12+...+X§)(Y1,...,Y,.)( : ) =(Zl,-..,Zn)( : )
Ya Zn
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14 Yl Y'l
(E-’Q’) (Yl,...,Y..)( : ) —(Yl,...,Y,,)AA’( : ) =0
1 Y, v,
14 Yl
(Ylv,Yn){<ZXJZ) I,,—AA'} ( ) =0
1 Y,

Since this is true for all Y¥7,...,Y,, we have

P
_ 2
AA' = (ZXJ-> I..
1
Now write 4 = A1 X, +... + ApX, (the A; are integral matrices). Then
the above gives

(A1 Xy + .+ ApXp) (AL Xy + ..+ ALX,) = (Z X?) I

1e.

i.e.

le.

(a) AiAj=I,(G=1,...,p)

(b) A;A} + A; A = 0 (i # j); which gives (1).

(1)=(5). Starting with the equations (1a, b), define A = A, X;+...+ 4, X,.
Then by (a), (b) we have

P
AA' = (Z X}) I,
1
and working backwards we arrive at the required identity (5).
(2)=(1). Given the p x n matrices By,..., B, satisfying (2a, b), define the
p matrices A,,...,Ap by

1st row of B, pth row of B,

A = 1st row of B, v Ay = pth row of B,

1st row of B, pth row of B,
Thus A, is the matrix whose jth row is the ith row of B;. These are indeed
n X n matrices. We show (1a, b):
(a) (AiAY) ks = (kth row of A;)(Ith column of Af)

= (kth row of A4;)(Ith row of A;)
= (ith row of By)(ith row of By;)
= (BeBy)ii

—(BuBL): (fk=1)

= ()i (by (2a))

=1
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as required. If k # [, then (BxB})ii = (BiB})ii and so
2((BxB1)ii) = (BiB; + BiBy)as
=0
by (2b). It follows that (BxBf)i; = 0 if k # [; which proves (1a).
The proof of (1b) goes as follows:
(AiAY + AjAD) ki = (kth row of A;)(Ith row of A4;)
+ (kth row of A;)(/th row of A;)
= (ith row of By )(jth row of B))
+ (yth row of By )(ith row of By)
= (BxB)i; + (BeBi);i
= (BxBi + BiBy);;
=0 (by b)of (2)).
(3)=(4). We are given p — 1 n x n matrices C,,C3,...,Cp_; satisfying
(3a,b,c). Now construct the A,,..., A, of (1) as described in the proof of
the implication (3)=-(1) and construct the By,..., B, of (2) by letting
1st row of A, 2nd row of A4,
1st row of A, By = 2nd row of A,

Ist row of A4, 2nd row of A,
Then these B’s satisfy
(a) BiB{=1,(1<i<n)
(b) BiB\+ B;B{=0(i#j)
(c) The top row of B; = ¢; where
&1 =(1,0,...,0),&2 = (0,1,0,...,0),...,en = (0,0,...,0,1).
So far this is easy to visualize. Now set
T=XlBl +...+X"B".
Then ‘clearly’ TT* = (}°] X?)I, as required by (4). This ‘clear’ part is best
understood by an example: let p = 2, n = 3,

rp T2 T3
G =|T4 Ts T¢ };
(7‘7 Tg Tg )
10
Al = 0 1 3 A2 = Cl
0 0

and this gives the three 2 x 3 matrices:

Bl=(1 0 0),Bz=(0 1 0),Bs=(o 0 1)
TNy T2 T3 T4 Ts5 T¢ rs T8 T9g

B, =

then

- o o
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under the implication (3)=>(2). These satisfy B;B! = I, (1 = 1,2,3) and
BiB' + B;B! =0 (i # j). Then
T=X1B1+X2B,+ X383

_ X, X2 X3
- (X171+er4+xar7, Xir2+Xorg+ Xars, X1T3+X2"s+xs"9)
Hence TT' = multiply out the product and we have to show in (4), that
this = (X} + XZ + X})I,.
Now the relations (2a,b) give the following:
r%+r%+r§=1, rin=rgs=rg=0

2, .2, 2 24 .24 .2
rs +rs +rg =1, ry+rgt+rg =1,

rot+ra=ry+ri=re+rg=0

T1T4 +Tors + 1r37¢ =177 4 1or8 + Targ = 1477 + 1578 + 1679 =0
Plugging in these values in TT* we find it is equal to (X7 + X7 + X2)I; as
required.

Finally to show that (4) implies each of (1), (2), (3), (5) it is enough to
show, for example, that

(4)=(2). Here we are given a p X n matrix T = (fi;), where f;; €
I[X,,..., X,], satisfying TT* = (}°7 X?)I,. Write T fully and use TT* =
Y X?. I, to give

=1

Here if any of the f;; had degree greater than 1 in any X}, then this would
lead to an equation of the type

A+...+ak=0 (a; € 7).

It follows that each f;; is a linear function in the X,,..., X,,. So we may
write T = X, By + ... + X B, where B;’s are p X n matrices with integer
coeflicients. Then

(ZX?) L=TT'=(X1B1+... + XpuB (X1 B} + ...+ XnB})

= ZX,?B,'B: + ZX.‘X_,‘(B,‘B; + BJ‘B:).

t=1 1<)
It follows that B;B} = I, (i = 1,...,n) and B; B!+ B;B} = 0 (i # j), which
proves (2). This completes the proof of Lemma 1. (]

Lemma 2. If each of the n x n matrices C,...,Cpy 1n (3) of Lemma 1
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have their entries 1, —1, 0, then all the entries of the matriz T, in (4) of

Lemma 1 will be linear forms in X,,..., X, in which each X; occurs with
a coefficient 1 or —1.
Conversely if T has its entries that are linear forms in X,,..., X, in

which each X; occurs with o coefficient 1, then under the implication
(4)=(3) of Lemma 1, the matrices Cy,...,Cp—1 have all their entries 1,
-1, 0.

Proof. Under the implications (3)=>(1)=(2) of Lemma 1, we see that all
the By,..., B, of (2) have entries 1, —1, 0. From (2) we go to (4) by setting
T=X,B, +...+ X,.B,, so T satisfies what is stated.

The converse is similar: from (4) go to (3), via (2) and (1). a

An immediate deduction is the following.

Lemma 3. There ezist eight 16 X 16 mairices My,..., Mg with integer
entries, indeed with entries 1, —1, 0, such that

(a) M?=-Ls(1<i<8).

(b) M,MJ+MJM,=0(1,¢])

(¢) M;M}=I5Le(1<i<8)

Proof. Consider the 9 x 16 matrix T over Z[X,,...,X;¢] given on page
204. Check that TT* = (31° X2);s. Thus we have (4) of Lemma 1,
hence (3) of Lemma 1, i.e. there exist eight 16 x 16 matrices My,..., My,
with integer coefficients satisfying (a), (b), (c) above. Furthermore, since T
has all its entries linear forms with coefficients 1, by Lemma 2, converse,
the M, ..., Mg have all their entries 1, ~1, 0.

We now need a compact procedure to build up large matrices from small
ones and so we introduce the so-called Kronecker product Ax B of A = (a;;),
an m x n matrix, with B = (b;;), a p X ¢ matrix (all entries in Z). If

apn a2 Qln
a a ... a
A= 21 22 2n
AGm1  Qm2 Amn
define
anB ap2B ... a.B
anB ay3pB ... a,B
AxB= 21 22 2n

amB amaB ... apm.B

an mp X ng matrix in blocks of p x ¢. The following are verified by brute
force:
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X3
X6
—Xas

~X1s

—Xie
X13
X1s
X3

~Xn
X0

X4

-Xn
-X12
Xs

Xie Xis XIG\

-X13
X6
—X15
X10

X2
-Xn
Xe

_XIG

Xl4

Xz

X5
X1
-X13

X12

Xn
~X1o

Xs /
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Lemma 4.

(1) (Al XBl)'(A2 XBQ)=A1A2 XB]BQ
(ii) Ifr,s€l, thenrAxsB =rs(Ax B)
(iii) If A, B are orthogonal, then so is A x B.

We leave the proof as an exercise to the reader.
Now note the relation

p(n) + 8 = p(16n).
This coupled with the following result is what makes things work.

Lemma 5. Suppose there exist n x n matrices C1,...,Cp_1 over Z such
that

(a) CiCi=1I, 1<i<p-1)
(b) Cl=-I, 1<i<p-1)
(C) C,'CJ' + CJ'C,' =0 (l 75])
Then there exist 16n X 16n matrices Dy, D,,..., Dpis)—1 over Z such that
(a)) DiD!=Ig, (1<i<(p+8)-1)
(b) D} =-Iign (1<i<(p+8)-1)
(c) DiDj+DjDi=0 (i #3j).
Furthermore, if Ch,...,Cp_1 have entries 1, —1, 0, then the Dy, D,,...,
D (p18)y-1 can also be so chosen.

Proof. Let M;,...,M; be as in Lemma 3 and put M = M, - M, ... Ms.
Now let

CixM fi<p-1
D; =
InXM,‘_’H_] lf2>p—1
Using Lemma 4, it is easy to verify (a)’, (b)', (c)’ above. That the D’s have
entries 1, —1, 0 is clear from their construction from the Cj, the M;, M and

I,. a

Lemma 6. Suppose n is an integer of the form 2* (a > 1), then there
exist p(n) — 1 n X n matrices Ay, As,..., Ayn)—1 with entries 1, —1, 0 such
that

(a) AAl=1T1,(1<i<p(n)-1)

(b) AZ=—I, (1<i<p(n)-1)

(c) Aidj+ A;Ai =0 (i #)).

Proof. Use induction on a. For a = 1,2,3, the 2* x 2* matrices in the



206 Squares

upper left hand corner of the matrix T exhibited in the proof of Lemma 3
all satisfy (4) of Lemma 1. Since (4)=>(3) we get respectively p(2) — 1,
p(4) — 1, p(8) — 1 matrices with entries 1, —1, 0 (see Lemma 2) satisfying
(a), (b), (c) above. Further p(2*) = 9 and the matrix T of Lemma 3 is a
matrix satisfying (4) of Lemma 1 and so again by (4)=-(3) of Lemma 1 we
get Ay,...,As (8 = p(2*) — 1) with entries 1, —1, 0 satisfying (a), (b), (c)
above. Thus Lemma 6 is true for a = 1,2,3,4. It remains to prove the
induction step from a to @ + 4. So suppose there exist p(2%) — 1 2¢ x 2¢
matrices with entries —1, 1, 0 satisfying (a), (b), {c) above. By Lemma 5,
there exist (p(2%)+8) —1 162 x 16-2° matrices with entries 1, —1, 0 also
satisfying (a), (b), (c) above (n replaced by 16-2%). But 16-2% = 2%+* and
p(2°) + 8 = p(2°H4). a

We have now to prove Lemma 6 without any restriction on n. To achieve
this we first prove the following,.

Lemma 7. Let T be a p X n matriz over Z[X,, ..., X,] such that
(a) thetop row of T is X4,..., X,
(b) TT'= (XY XN,
Then for each integer s > 1, there ezists a p X sn mairiz T(s) over
2[X,,..., Xn,..., X,n] such that
(a) the top row of T(s) is X1, Xq,..., Xu,..., Xsn.
(b) T(s) T(s)' = (X2, XD) -
Furthermore, if every entry of T is a form with coefficients +1 then T(s)
can also be so chosen.

Proof.  Let T; be the matrix obtained from T = T} by replacing each
variable X; occuring in T by the variable X; + (: — 1)n and define

T(s)=(T,Tz,...,T).
It is now almost obvious that T(s) satisfies the required conditions. As we
have always done, we verify it for the case s = 2:
X1,.- 0, Xny,  Xat1y---rXon
T(2)=(T1,T2)= f21,-'-’f2n, f2,n+la---,f2,2n

fph R vfpn» fp,n+1,' .. ’fp,2n
The top row is visibly as required. Further,

2n
T(2)T(2)' = (Z X,?) I:

just write out and check. O
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Lemma 8. Letn > 1 be an integer and let p = p(n). Then there exists a
p x n matriz T over Z[X,,...,X,] such that
(a) the top row of T i3 X,,..., X,
(b) TT' = (Y iu X?)Ip'

Moreover T can be chosen so that every entry of T is a linear form in
X1,..., X, with cocfficients 1. (This is just Lemma 6 without any restric-
tion on n).

Proof. Write n =2%.s for s odd. If a =0, set

T = (Xl,Xg,...,X").
Then T satisfies everything required by the lemma. So suppose a > 1. By
Lemma 6, there exist p(2") — 1 2% X 2* matrices 4,, Ag,..., Ay2n)—1, With
entries 1, —1, 0 such that (a), (b), (c) of Lemma 6 are satisfied. Hence
by (3)=(4) of Lemma 1, there exists a p(2%) x 2% matrix U with top row
(X1,...,X2e) such that

2A
UU' =Y XP,00).
i=1
Now use Lemma 7 to get the required T as
T=(U1’U2)"‘aUJ) (U1=U)

and note that p(2° - 3) = p(2°%).
This completes the proof of Lemma 8. a

Proof of Theorem 14.1. For p = p(n), the implication (4)=(5) of Lemma
1 gives the result, the last line of the enunciation of the theorem coming
from Lemma 2.

If p < p(n), we simply put Xp41,..., X, equal to 0 in the identity

p(n) n n
LX) =2
=1 j=1 k=1
to get what is required. O

Remark. The (9,16,16) bilinear formula given on the second page of this
chapter can be derived using Lemma 1 and the 9 x 16 matrix T of Lemma 3
as follows: write T'= X, B, + ... + X 6B16. Actually these X’s should not
be mixed up with the X’s of the bilinear identity (9, 16,16); so let us call
them &,..., &6 respectively so that

T)=&B1+...+&eBis
These sixteen 9 x 16 matrices B, ..., B¢ are the B’s of Lemma 1, (2).
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From the proof of (2)=>(1) of Lemma 1, construct the nine 16 x 16 matrices
Ai,...,Ag. This is a simple procedure, though occupying space, but the
matrices A4,,..., A9 turn out to have most entries 0; indeed each has only
sixteen non-zero entries (1 necessarily). Now use the proof (1)= (5) of
Lemma 1 and define A = X, 4, +... + XgAg. Then

Z=AY
(¥, Z are column vectors of order 16 and A is the required 16 x 16 matrix).

For more information and results on matrices with entries in {0,1, -1},

coming from these Hurwitz-Radon ideas, see the book by Geramita and
Seberry [G5].

Exercises

We have seen in Chapter 10 (Step 1, equation (10.3)) that the identity
(XP4+ .  +XHY2+... +YH) =22 +...+ 22
is equivalent to the existence of a family
§=(A1,42,..., A1)

of n X n matrices satisfying
(1) Aj=-AG=1,..,r-1)
(2) Aid; = -AjAi (i #))
B) Al=-I,(=1,..,r=1).

We call such a family a Hurwitz-Radon (HR) family. The theorem of
Hurwitz-Radon is then the following.

(a) The maximum r for which there is an HR family of n x n matrices is
p(n) — 1, and conversely

(b) For r = p(n) — 1 there is such an HR family.

We give below a series of results (see [G4]) in the form of exercises to
prove (b) of the above result. It will turn out that all matrices involved

have as entries 0, 1, —1 only so that we get, in fact, the integral version of
the Hurwitz-Radon theorem (b).

Let
0 1 0 1 1 0
A=(—1 0>’P=(1 0>’Q=(0 —1)'

1. Prove that

(i) {A}is an HR family of p(2) — 1 integral matrices of order 2.

(i) {AQL,P®A,Q® A} is an HR-family of p(4) — 1 integral matrices
of order 4.
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(iii) {LARL, LAPRA QRQRA, PRQQRA, AQPR®Q, AQPQP,
A®QQ I,} is an HR-family of p(8) — 1 integral matrices of order 8.

2. Suppose {M;,...,M,} is an HR family of integral matrices of order n.

Show that

(i) {A®L,Q®M; (: =1,2,...,8)} is an HR-family of s + 1 integral
matrices of order 2n.

(ii) If {L,,...,Lnm} is an HR-family of integral matrices of order k, show
that

(POLOM(1<i<s),QRL;@L.(1<j<m),AR® Ink}
is an HR-family of s + m + 1 integral matrices of order 2nk.
(Hint: (i) and (iii) follow from (A ® B)* = A' @ B* while (ii) follows since
the product of any two distinct members is skew-symmetric).

3. Show that Exercise 1 and Exercise 2, (i) give HR-families for n = 2, 4, 8,
16 and that Exercise 2, (ii) gives the transition from n to 16n with k = §,
m="T.

Show also that the transition from n = 2° to 2°b (b odd) is given by ®1I.

Remark. This gives the integral version of the HR theorem part (b) over
any integral domain D in which 2 # 0.

4. From Theorem 1 of K.Y. Lam’s paper [L1], work out the bilinear maps
(i), (v), (vi), (vii), (viii) and determine which of these are norm-preserving;
when this is the case, write down the corresponding bilinear identities.
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Artin-Schreier theory of formally
real fields

A basic algebraic property of real numbers is that the only relations of the
form Y a? = 0 (a; € R) are the trivial ones viz. 02+ ...+ 0% = 0. This
observation led Artin and Schreier to call any field having this property
formally real. We see that the definition of formally real fields inherently
involves squares and indeed throughout the development of this theory,
squares feature systematically into it. This is one of the reasons for including
this topic in a book on squares.

Further, the theory of formally real fields led Artin (1927) to the solu-
tion of Hilbert’s 17th problem which shows the additional connecting link
between squares and the Artin-Schreier theory.

Note also that the classical application of Artin-Schreier theory is to the
problem of determining which elements of a field are representable as sums
of squares of elements of the field. For algebraic number fields (i.e. finite
extension fields of the rationals Q) the answer is the famous Hilbert-Landau
theorem (Theorem 15.11 in this chapter).

We thus see that a chapter on Artin-Schreier theory fits well into the
theme of squares. We proceed with the introduction of the main ingredients
that appear in the development of this theory, namely order, real closure
etc. There are many excellent books on this topic. Amongst the standard
ones is [J1].

Definition 15.1. A field K is said to be ordered if a relation > is defined
on K that satisfies

(1) Ha,be K, then eithera>bora=bor b> a;
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(2) Ifa>b ce K,c>0, then ac > b
(3) Ifa>b,ce K,thena+c>b+c.
Equivalently we have

Definition 15.1'. K is ordered if a subset P C K can be found such that
(1) 0¢P;
(2 P+PCP,P-PCP
(3) K =PuU{0}U—P. (disjoint union).

Clearly Definitions 15.1 and 15.1' are equivalent, for say a > biff a—b € P;
conversely let P = {a € K | a > 0}. The following are almost trivial
consequences of the definition:

Corollary 15.1.

(@) P#0ifIK|22

(b) PN—P =0 forifa{#£0)€ PN—P, thena € P,a € —P, i.e. a € P,
~a € P 30 0= a+ (—a) € P which i3 false as required.

(¢) (-P)+(-P)C-P,(-P)(-P)CP.

(d) o® € P for all a € K*, for if a € P then o € P by (2). If a € —P,
then —a € P, so (—a)(—a) € P by (2) again, i.e. a* € P.

(e) All non-zero sums of squares € P. This follows form (1) and (2) of
Definition 15.1'.

(f) If P, P' are two orders of K such that P C P’ then P = P'. This
follows from the definition.

Definition 15.2. K is said to be formally real if —1 (or equivalently 0)
cannot be expressed as a sum of non-zero squares in K.

Let S(K) (or simply S when K is fixed) denote the set of all elements of
K that are sums of squares of elements of K (including 0).

Corollary 15.2.

(2) K ordered = K formally real, for S* (the non-zero elements of S)
C P by Corollary 15.1 (e), so no sum of squares can vanish.

(b) charK = p = K not formally real, for then 1 + 1+ ... +1 (p times)
=0.

(c) S is closed under addition, multiplication and division (by non-zeros);
closure under the first two are trivial. As for division, we have

doat/ 38 =3 a3 /(3 By
_ asum of squares cs

one square
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(d) If K is not formally real then S = K if char K # 2 for then —1 =
al +...a% soifa € K, then

o= (21) - (57)

a+1l 2 a—-1\2
=( 3 ) +(a§+...+a3)(—2—-)

which is a sum of r + 1 squares and so in S. Hence K C S, and
K=S5.
If char K = 2, then S = K need not hold, for ezample K = Fy(t).

We now prove the following important

Theorem 15.1. K can be ordered iff K is formally real.

First we have the following.

Lemma 1. Let G be a subgroup of K* such that

i) G+GcaG
(i1) G contains all non-zero squares of elements of K (i.e. G D K"z). Let
—a(#0) ¢ G and let
'=G+aG={z +ay|z,ye G}
Then T is a subgroup of K*, closed under + and O G.

Proof. Let z,y, z', y' be elements of G; then
1
(z +ay)- Tray) - (z + ay)(a' +ay')/(z' + ay')?
= (22’ +a?yy') /(' +ay')?
+ a(zyr +:l:'y)/(:l:l + ayl)2
€G
since z, z', y, y/ and all squares are in G. Also
(z+ay)+ (2 +ay)=(z+2)+aly+y') €T
Note also that 0 ¢ T for if 0 = z + ay (¢, y € G) then —a =z/y € G - a
contradiction.
Finally to show that I' D G we proceed as follows: since I' is a subgroup
of K*sol1 €T, sayl =z+ay (z, y € G). Thenif ¢ € G, we get
g = gz + gay € I'' as required. a

Proof of Theorem 15.1. Let F be the set of all subgroups of K* closed
under addition and containing all squares. Then S* € F, so F is non-empty.
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By Zorn’s Lemma, there exists a maximal element, G say, of 7. We show
that G defines an order in K. We must show K = GUOU—G (disjoint). For
if not, then there is an a € K* such that a ¢ G, —a ¢ G. By the Lemma,
I' = G + aG € F, so by the maximality of G, ' = G. However, 1 € G, so
l1+a-1€T,ie. 1+a€l, butag¢ T (sincea ¢ G)soa(l+a)¢T,ie
a’+1-a¢T;but a’ € G=Ts0a®+1 -a€T; a contradiction. Thus
K=Guou-G. 0

Example 1. Q has only one order viz. P = {a | a > 0} (a > 0in the
usual sense),

Proof. P is clearly an order. If P! is any other order, then since all squares
are in P' and each positive rational (positive in the P-sense) is a sum of
four rational squares, so each positive rational is in P’, i.e. P C P'; but
then by Corollary 15.1, (f), P = P’; so P is unique.

Example 2. Q(+v/2) has the following two orders:
Pi={a+b/2|a,b€Q,a+b/2>0 in the usual sense}

P,={a+b/2]a,b€Q,a—bv/2>0 in the usual sense}.
and no others.

Proof. 1t is easy to check that these are certainly orders. We now show
that there are no more.

Let o be the automorphism v/2 — —+/2. First note that for any order P,
oP is also an order:

oP = {oa|a€ P}.

(i) 0€oP=0"'0€ P, iec. 0€ P whichis false.
(ii)) Let ca, 0B € oP. Then catoff = o(a+f) € oP sinceat f € P
as a, f € P.
(iii) Let a € Q(v2)* say a =a+bv/2#0. If a ¢ oP then c™'a ¢ P so
o0 'la€ —P,ie. a€o(—P)=—0P.
a

Thus our orders P, P, are related by P, = ¢P,. Suppose now P is any
order of Q( \/5) Then oP is also an order and by Example 1, both P and
o P contain all the positive rationals.

Now if v/2 € P, well and good, otherwise —v/2 € P, so o(—-\/i) € oP,
ie. V2 € oP, and without loss of generality, /2 € P (otherwise consider
oP). We shall show that P, C P; then by Corollary 15.1, (f), P, = P. So
let a + bv/2 € P,ie a+ b2 > 0, in the usual sense.
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Case 1. a, b > 0. Then a, b € P (being rational) and V2 € P, so
a+b/2 € P,sinceboth P+ PC Pand P-P C P.

Case 2. a <0, b>0. Supposea+ bv/2 ¢ P. Then —a — bv/2 € P. But
~a+bv2 € P, since —a, b, v/2 € P, as they are all positive; so aZ —2b2 € P.
Here a + bv/2 > 0, in the usual sense, as it is in P, i.e. bv/2 > —a > 0
or bv/2 > l|a|. In other words 25> > a®. Thus 0 > a®> — 2b*> € P while
1/(2b* — a®) € P since it is a positive rational. Hence their product is
—1€ P.Butle P,so~1€ —P. Thus —1 € PN —P which is false.

Case 3. @ >0, b< 0. Suppose a+ by/2 ¢ P. Then —a — b\/2 € P, but
a - bv/2 € P since a, —b, V2 € P. So 0 > 2b* — a® € P since a + bv/2 > 0,
as it is in Py; i.e. @ > —bv/2 > |b|/2 because b < 0, so a? > 2b%; while
1/(a® — 2b?) € P, since it is a positive rational. So their product is —~1 € P
and as in Case 2, we get a contradiction.

Finally note that the case a < 0, b < 0 does not arise since then a+bv/2 <
0.

Thus in all cases P, C P so P, = P. a

Definition 15.3. An element o € K (ordered field) is said to be totally
positive if a is positive in every ordering of K, i.e. a € P for all order
subsets P of K.

Remark. If K has no order, every « is taken as (vacuously) totally positive.

Thus for example, 3 + /2 is totally positive in Q(v/2) since 3 + /2 > 0
and 3 — v/2 > 0; where as 1 + +/2 is not totally positive since although
1+v2>0,1-v2 %0.

Totally positive elements of an ordered field are characterized by the
following beautiful property.

Theorem 15.2. Let K be an ordered field. An element a € K i3 totally
positive iff a 13 a sum of squares in K.

First note the following: let L/K be an extension of fields. Suppose L
is ordered by the subset P C L. Then the subset PN K C K orders K
(check). This order is said to be induced on K by the order P of L while
the order P of L is called an extension of the order PN K of K. It may be
possible to extend an order in K to several orders in L, e.g. Q(+/2)/Q. Note
also that if & € K is positive as an element of P in L, then « is positive as
an element of PN K in K.

Proof of Theorem 15.2. First let a be a sum of squares. Since each order
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P of K contains all sums of squares, so a € P for all P, i.e. « is totally
positive.

Conversely let a be totally positive. We must show that « is a sum of
squares. Let L = K(v/—a). If L is formally real (i.e. ordered, say by a
subset P) then —a = (vV/—a@)? > 0, being a square in L, and so —a > 0 in
K also with respect to the restricted order PN K of K, i.e. a is not totally
positive - a contradiction. It follows that L is not formally real and so we
have a relation

-1=) f (Bl (15.1)
J
If V/—a € K, then L = K so ; € K and we have
a+1)? o—~1\? a+1)\? a—1\° 2
= () - (7)) = (55) +(*7) =7
which is a sum of squares in K as required.
If V/—a ¢ K, then L is a quadratic extension of K and (15.1) gives

—1=) (aj +b;V/=a)  (aj;,b; € K),

ie.
-1= Za3 - azb§ + 2\/—(12(1]'6]'.
J
But 1, v/—a are linearly independent /K and so

1+Ea?=a2b§, Zajbjzo.

Hence
1+Ea§ (1+Za§)(2b§)
o= =
P (0%
which is a sum of squares in K. d

Basic Lemma. Suppose K is formally real, but that the quadratic exten-
sion K( /a) is not; then —a € S(K).

Proof. In K(./a) we have an equation
~1= (a;+b;va)  (a;,b; € K).
j=1

Then as above —1 = 3~ a2 +a 3" b2. Here ) b2 3 0 since K is formally real,
hence
1+ 2a _ 1+ Y a)(Xh)
—-_—a = =
28] (2 8)?

which is a sum of squares in K € S(K). (|
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Definition 15.4. A field K is called real closed if:

(1) K is formally real;
(2) no proper algebraic extension of K is formally real.

The field R of real numbers is, of course, the most basic example of a real
closed field. Are there other examples? The ubiquity of real closed fields is
demonstrated by the following.

Remark. Let K be formally real and let 2 be an algebraic closure of K.
Then  contains a real closed field R containing K.

Proof. Let F be the collection of all formally real subfields of { containing
K. Now F is non-0 since K € . By Zorn’s lemma, F has a maximal
element; call it R. If R is not real closed, it has a proper algebraic extension
R' which is formally real and R’ C £, since  is algebraically closed. This
contradicts the maximality of R in F. Hence R is real closed. O

Our object now is the following.
Theorem 15.3. If K 13 real closed then K has a unique order.

Proof. Tt is enough to prove that for each non-zero a in K, exactly one of
the following holds:

either o« is a square in K
(15.2)

or —a is asquare in K.
This is because once (15.2) is proved and if P is any order of K, then

P> {o?|la € K*} = S*(K)
and if @ € P and « is not a square, then by (15.2), —a is, i.e. —a € P so
a € —P which is a contradiction. Thus « € P = a is a square. It follows
that P = S*(K). So P is unique.

Now we prove (15.2). If a is a square in K well and good; otherwise let

L = K(\/a). L is a proper algebraic extension of K, it is not formally real,
i.e. there exist 8;, v; € K (not all zero) such that

0= (B +7ve)
giving ) B7+ad 7} =0, Bivi = 0. Now K is formally real so 3~ v? # 0.

Hence
L TB_TEYy
Y ()R

Thus what we have proved is the following.

= asum of squares in K.

If o is not @ square in K, then —« i3 a sum of squares in K. (15.3)
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If now & is a sum of squares in K, then
-

—1l=-—= squares/ E squares = E squares
o

which contradicts the formal reality of K. Thus « is not a sum of squares
in K. So what we have proved is that if « is not a square then « is not a
sum of squares, i.e. that

if a 13 a sum of squares then o 13 a square. (15.4)

(15.3) and (15.4) give that if o is not a square then —a is. O

Remarks.

1 Theorem 15.3 exhibits the structure of real closed fields viz. if K is
real closed, then
(i) for any z € K*, either z € K¥ or—z€ K*z;
(i) K has a unique order in which P = K**.

2 If o is an automorphism of K, then o preserves order. For a > b =
a—beEP=za-b=ct=0(a—b)=0(c?)=>0a—0b=(0c)’ €P =
oa > ob.

The following two properties of real closed fields R are important and
useful.
(1) Positive elements of R have square roots in R, where positive refers to
the unique order P = {o®|a € R*} of R.
(2) Every polynomial f(X) of odd degree, with coefficients in R, has a root
in R.

Proof. (1)Letz € P,soz=0o® (a € R*)ie. /t=a€R.
(2) Use induction on the degree n of f(X). The result is clear for n = 1. If
f(X) is reducible over R, one of its factors is of odd degree at most n and
so has a root 8 in R by the induction hypothesis and this 8 is the required
root of f(X)in R.

So suppose f(X) is irreducible over R. We shall get a contradiction as
follows: let L = R(6), 8 a root of f(X). Since L is an algebraic extension
of R it is not formally real. So we have a relation

~1=3"6%(68) (degi(X) <n—1).
Then
1+ ) 61(X) = f(X) 9(X) (15.5)
Comparing degrees, we get deg f +deg g < 2(n—1) and even. It follows that

degg < n—2 and odd. Hence by the induction hypothesis, g(X) has a root
B in R. Putting X = 8 in (15.5) gives 1 + 3_ ¢?(8) = 0 which contradicts
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the formal reality of R, noting that not all ¢;(3) are zero; for otherwise we
get —1 = 0. O

Remark. A well known result in quadratic forms known as Springer’s
theorem states that if a form f(Xi,...,X,) is anisotropic over a field K
and L is an extension of K of odd degree, then f is anisotropic over L.
In Theorem 3.7 we gave a proof of this result for the diagonal form f =
X? +...+ X% The general case is no more difficult.

Using this we see that if K is formally real, so is every odd degree ex-
tension L of K. Furthermore, a proof of Property (2) above can be easily
deduced as follows; the result is trivial if n = 1 so let n > 3. We claim that
f(X) must be reducible in R[X], for otherwise R(X)/(f(X)) is a proper
odd degree extension field of R and so is formally real as proved just above,
contradicting the fact that R is real closed. So let f = f;f, be a proper
factorization of f where, say deg f, is odd and less than deg f. By the in-
duction hypothesis, f; has a root in R, hence so has f. O

Theorem 15.4. Let K be an ordered field with respect to a fized order in
K, such that

(1) Positive elements have square roots in K.
(2) Any polynomial of odd degree € R[X] has a root in K.
Then /-1 ¢ K and K(v/—1) i3 algebraically closed.

Proof. If —1 = o? (@ € K) then K is not formally real so not ordered.
But it is given to be ordered so /—1 ¢ K.

Let f(X) € K(+/=1)[X] be any polynomial with coefficients in K(v/-1).
We have to prove that f(X) has a root in K(\/-:l-) Let v/—1 = i. Without
loss of generality we may suppose f(X) € K[X]; for consider the polynomial
f(X) - f(X) € K[X] (where the ‘bar’ carries each coefficient of f to its
conjugate, i.e. i to —i). Suppose f(X)- f(X) is shown to have a root 8 in
K[X]. If B is a root of f(X), well and good; if 3 is a root of ?(X), then 3
will be a root of f(X). So f(X) always has a root in K(1) as required.

Next we show that if 3 # 0 every element a+if of K(i) has a square root
£+in in K(i): for we simply want to solve (£ +i9)? = a+if, ie. £2—9% = a,
26n = B, or £ — P?/4€? = @, on eliminating 7, i.e. 432 —4ad — 2 =0
with A = £2. The two solutions of this are {a + \/(a? + §2)}/2. Now
by hypothesis (1) on K, since a? + 8? is ‘positive’, y/a? + 2 € K so both
{ax+/(a? + B?)}/2 € K. The ‘positive’ root is again positive, for clearly we

have \/a? + 42 > |a|, so /(a? + B?) - |a| > 0, hence v/(a? + B2) +a >0
certainly. Then
& ={V(e* +p2) +a}/2>0
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and hence by (1), £ = /{\/(e? + %)+ a}/2} € K and then n = §/2{ € K
also, as required.
Thus we have the following to note:

(a) that there is no extension field L of K (1) of degree 2;
(b) that K has no extension of odd degree (by Hypothesis (2) in the
theorem).

&
N ———>

L]

t~
3——————)(———-

kb

Let now f(X) € K[X] and we shall show that f(X) has a root in K(z).
Let E D K(i) be a splitting field of (X2 +1)- f(X)/K. Let G = Gal(E/K)
and let o(G) = 2° - m, where m is odd. By Sylow’s theorem, there exists
a subgroup H of G of order 2¢. Let L be the fixed field of H so that the
degrees are as shown.

By (b) above, L = K, i.e. m =1, 50 o(G) = 2¢ = o(H). Now if ¢ > 1,
then o(G(L/K(i))) = 2¢~1. Let H be a subgroup of G(L/K(%)) such that
o(H) = 2°7%. The fixed field of H is a quadratic extension of K(i). But
such extensions do not exist. Hence e = 1 and the theorem is proved. O

In Theorem 15.4, if K is real closed, then both the hypotheses are satisfied
as we have already verified before the theorem. Hence we have the following
important corollary.
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Theorem 15.5. If K s real closed then /-1 ¢ K and K(v/—1) is alge-
braically closed.

The converse of this result is also true.

Theorem 15.6. Suppose /—1¢ K and K(v/—1) is algebraically closed,

then K is real closed.

Proof. First note that if f(X) € K[X] is irreducible then deg f = 1 or 2
for K(6) C K(+/=1) for any root 8 of f(X), since K(v/—1) is algebraically
closed, so 8 is of degree 1 or 2 as claimed.

We now show that if a, 8 € K, (8 # 0), then o? + #? is a square in K:
Consider the polynomial ¢(X) = (X? — a)? + #% € K[X]. This equals

(X = (a+iB) )X + (a+iB)' /)X = (a = i) *)(X + (« —iB)'/?).
Since B # 0 none of +a +i3 € K, so g(X) splits into two quadratic factors
got by pairing the four linear factors above, two at a time. The linear factor
pairing with (X — (a + i8)'/?) cannot be (X + (a + i8)'/?) since their
product = X? — (a+i8) ¢ K[X]. So (X — (o +18)'/?) must pair with one
of (X £ (a—iB)!/?), i.e. one of (X — (a +iB)/?}(X £ (a —iB)'/?) € K[X].
In either event (a? + g2)!/? € K, i.e. a® 4 8% is a square in K as required.
Thus a sum of two squares in K is a square in K. So by induction any sum
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of squares is a square. But —1 is not a square in K so it is not a sum of
squares in K, i.e. K is formally real. Now any irreducible f(X) € K[X] is
of degree 1 or 2, so a proper algebraic extension of K (E say) is of degree
2 and C K(/=1), since K(v/—1) is algebraically closed. So E = K(v/=1)
which is not formally real. Thus K is real closed. O

We have now two characterizations of real closed fields:

(1) K is real closed iff /=1 ¢ K and K(v/—1) is algebraically closed.
(2) K (supposed ordered) is real closed iff positive elements of K have a
square root in K and any polynomial if odd degree € K[X] has a root
in K.
Alternatively the condition “positive elements of K have a square root in
K” can be written |K*/K*'| = 2 since for real closed fields K, denoting by
P the set of positives, we have P = K*.

Theorem 15.7. Let R be a real closed extension field of K. Let A= {a €
R|a is algebraic /K}. Then A is real closed.

¢ C=R(-1)
r 4

4+ R
R §
K )

Proof. Let C = R(+/—1) so that C is algebraically closed. Let

I' = {B € C|B is algebraic /K}.
We claim that T' is an algebraically closed field. For let f(X) € K[X] be
any polynomial. f(X) € C[X] too, and so has a root p in C since C is

algebraically closed. Now p is algebraic over I’ and T is algebraic over K,
so p is algebraic over K, i.e. p€T.
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What do the elements of I look like?
They are elements of C and so of the form o +v—-1- 8 (a, § € R). Since
a++v—-1-B €T, sodoes a —+/—10, clearly . Hence

a=%{a+\/—_1ﬁ+a—\/—_1ﬁ} er,
s0
B=(a+V-18-a)/-1€T,
i.e. «a, B are algebraic over K, but o, B € R, so a, § € A. Thus elements

of T are of the form a + v/—18 where a, 8 € A, i.e. I' = A(v/-1) and since
v—-1¢ Rso+/—1¢ A. This implies A is real closed. O

Theorem 15.8. Let K be ordered and let  be an algebraic closure of K.
Let E be the subfield of Q obtained by adjoining to K, the square roots of
all the positive elements of K; then E ts formally real.

Proof. Suppose we have a relation Y ¢? = 0 in E. The &; all belong to a
finite extension of K, say K(v/Bi,. .., VPr) (B; positive elements of K). So
it is enough to prove that every field of the form K(v/Bi,...,vBr), B; >0
in K, is formally real, i.e. that }_¢? =0, ¢ € K(vPBi,..,VBr) = &=0
for all 1.

Use induction on r. First let r = 1, then the & € K(v/B), 8 > 0. Write
& =ni+PG (ni, G € K). Then €& =0= Znf+B1¢F =0, Zni¢; = 0.
Since 1, /B are linearly independent /K. In the first relation, Y (? # 0,
since K is formally real. So —8 = Y_n?/ 3" (? which is a sum of squares
and so positive, i.e. 8 < 0 which is a contradiction. Thus K(1/B) is formally
real.

Now suppose the result is true in K(v/B,,..., VB._,) = L. So suppose L
is formally real and we must prove that L(3) is formally real, where 8 > 0
(in K).

Now as for the case r = 1, we get —3 > 0 in L (if we assume to the
contrary that L is not formally real) and so in K, by the induced order —
which is a contradiction. O

Definition 15.5. Let K be an ordered field with positive elements P.

An extension field R of K is called a real closure of K (relative to P) if it

satisfies the following three conditions:

(i) R is real closed;

(ii) R is algebraic over K (not necessarily finite);

(iii) Thze (unique) ordering of R is an extension of that of K (i.e. P =
R* N K).

We have the following existence and uniqueness result.
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Theorem 15.9.

(i) Every ordered field K possesses a real closure relative to the given
ordering.

(ii) IfKi, K3 are ordered fields and Ry, Ry their real closures relative to the
respective orderings, then any order isomorphism f : Ky — K, eztends
uniquely to an isomorphism f : Ry — R, (which is automatically an
order isomorphism).

Remarks.

1. This result implies that for each distinct ordering of K there exists
a unique (up to order isomorphism) real closed field algebraic over K, for,
if Ry, R, are two real closures of K, take f : K — K to be the identity
isomorphism, then f : Ry — R; is an order isomorphism, i.e. R; is order
isomorphic to Ra.

2. We present here only the proof of the existence. The uniqueness
requires, classically, a technical theorem of Sturm and as this chapter is
merely an introduction to the Artin-Schreier theory, we only refer the reader
to Jacobson’s Algebra Vol. 1II (or Basic Algebra, Vol. II). Recently, however,
Knebusch [K2] has found an elegant proof of this uniqueness result which
avoids Sturm’s theorem.

Proof of the ezistence of real closures. Let Q be an algebraic closure of K
and let E be the subfield of 2 got by adjoining to K, the square roots of
all the positive elements of K. By Theorem 15.8, F is formally real and of
course {1 is an algebraic closure of E also. Hence there exists a real closed
field R: E C R C Q2 (see the Remark after Definition 15.4). This R is the
required real closure of K for conditions (i) and (ii) are clearly satisfied.
Indeed Theorem 15.8 and E need not even be brought into the picture for
this.

As for condition (iii), let 3 € K, 8 > 0in K. Then \/f € E (definition
of E),i.e. B=p*>(p€E). Bt ECRsowithpe R f=p?>0in R.
Thus positive elements of E are positive in R. This proves (ii). a

We can apply these results to the field Q of rational numbers and prove
the following beautiful theorem.

Theorem 15.10. Let K be an algebraic number field with r real conju-
gates. Then K can be ordered in precisely r distinct ways.

Proof. Let K = Q(9) and let irr(8,Q) = f(X) be of degree n having r real
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zeros § = 61,0,,...,0, and n — r = 2s complex zeros. Let o; (1 <i < r) be
the isomorphisms of K/Q into A/Q (A being the field of all real algebraic
numbers) given by ¢;(8) = 6;; indeed the elements of K are polynomials
9(8) of degree at most n — 1, so that o, carries g(f) to the element g(8;) of
K; = Q(8;). The ordering of K; (C A) imposed by the unique ordering of
A provides an ordering >; of K, viz. for p € K, say p > 0 iff 0;(p) >: 0 in
K;. Thus for eachi =1,2,...,r, we get an ordering >; of K. We now show
(a) any order of K coincides with one of these >;;

(b) >y, >2,...,>, are all distinct.

So suppose > is an ordering of K and let A be a real closure of K relative
to it. But K is algebraic over Q, so A is a real closure of Q (check that it
satisfies the three conditions of Definition 15.5). Hence by the uniqueness,
we have an order isomorphism o : 4/Q — A/Q. The restriction of ¢ to K
coincides with one of the o; and so the given order of K is the same as >;.
This proves (a).

Finally suppose >; and >; give the same ordering of K. Then we have
an order preserving isomorphism f : Q(6;) — Q(4;) taking §; — 8;. But
A is a real closure of Q(6;) as well as of Q(8;), so by Theorem 15.9, there
exists an automorphism

f:A/Q— A/Q taking 6; — 0.
However, since A is a real closure of Q, we see by Theorem 15.9 that the
identity is the only automorphism of A/Q. It follows that §; = #;, which
proves (b). O

Combining Theorems 15.10 and 15.2 we get the following.

Theorem 15.11 (Hilbert-Landau). Let A be an algebraic number field
with r real conjugates and let oq,...,0, be the r different isomorphisms of
K/Q into the field A of real algebraic numbers. Then a non-zero element p
of K is a sum of squares in K if and only if o;(p) >0 forallj =1,2,...,r.

At the 1900 Paris International Congress of Mathematicians, Hilbert gave
a list of 23 unsolved problems, the 17th of which is the following.

Let f(X1,...,X5) be a rational function (i.e. a polynomial divided by a
polynomial) in the n independent indeterminates X, ..., X,, with rational
coefficients:

f(Xla"'aXn) € Q(‘er"aXn);
if f is positive semi-definite, t.e. f(ay,...,an) > 0 for all real ay,...,a,
for which f(ay,...,a,) is defined, then when is it a sum of squares in

QX1,..., Xn)?
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In 1927, making essential use of Artin-Schreier theory and Sturm’s theo-
rem, Artin gave an affirmative answer to Hilbert’s ‘conjecture’, by proving
the following stronger result.

Theorem 15.12. Let K be a subfield of the field R of real numbers having
a unique ordering and let f(X,,...,X,) € K(X1,...,Xn) be such that for
all a; € K for which f(ay,...,a,) is defined, we have f(a1,...,a,) = 0 (we
do not demand this for all a; € R). Then f(X,,...,X,) i3 a sum of squares
in K(Xq,...,Xa).

Remarks.

1. Such fields K are not at all rare, for example, in addition to Q or 4, K
could be any algebraic number field having oaly one real conjugate.

2. There is no mention in Artin’s result of how many squares are needed for
such a representation. In Chapters 4 and 5 we described Pfister’s solution
to this problem where he shows that 2" squares suffice.

3. Artin’s original proof of Theorem 15.12 uses uniqueness of real closures
and Sturm’s theorem. Since these latter results are not covered here, there
is no point giving his proof of Theorem 15.12. The reader is referred to [A6]
or [J1].

4. Recently Knebusch [K2] has given an elegant proof of Artin’s result
avoiding the use of Sturm’s theorem.

Exercises

1. (i) Show that if K is formally real then so is K(X), where X is transcen-
dental over K.

(ii) Prove that K(X,,...,X,) is formally real, where X;,..., X, are in-
dependent transcendentals over K.

2. Let Q be the field of rationals and let K = Q(X). Show that K has a
non-countable number of distinct orderings.

3. (Cohn) An ordered field K is called archimedean if given « > 0, 8 > 0
there exists an integer n such that na > f (equivalently given a > 0 there
exists an integer n such that n > a).

Let K be an ordered field with P as the set of positive elements. Show
that K(X) can be ordered as follows. For any element r(X) of K(X), write
rX)=a- X" f(X)/g(X), with « € K, f(X), g(X) € K[X], and having
constant term 1 and we say »(X) > 0 if @ > 0 (i.e. a € P).

Show that K(X) is not archimedean.
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4.* Prove that any archimedean ordered field is order isomorphic to a sub-
field of R.

5. (Cohn) Let K be ordered and let X, Y be independent indeterminates
over K. Order K(X) as in Exercise 3 and repeat the process for K(X,Y) =
K(X)(Y). Show that every element of K(X,Y) is majorized by an element
of K(Y), but that there exists no element of K(Y) between X and X?.

6. Let K be formally real and let K(6) be an algebraic extension of K.
Show that K(8) is formally real in the following cases:

() 6=yaaeK,a>0

(i) irr(8, K) is of odd degree.

7. (Kaplansky-Kneser). Let K be a field with charK # 2 which is not

formally real. Suppose |[K*/K *2| = n is finite. Show that any non-singular
quadratic form in n variables is universal.

8. (Artin—Schreier) (i) Let L/K be an extension of odd degree. Show that
any ordering of K extends to an ordering of L.

(ii) Let L = K(a) where [L : K] is even, and let P be an ordering of K.
Suppose Np/k(a) < 0 with respect to P (of course Ny x(a) € K). Show
that P can be extended to an ordering of L.

(iii) Show that an ordering P of K can be extended to K(/a) iff a > 0
with respect to P.

Remark. (i) is indeed Springer’s theorem; see Theorem 3.7.
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Squares and sums of squares in fields
and their extension fields

For any given field K, we would like the answers to the following questions:

(1) What proportion of elements of K are squares in K?

(2) What proportion of elements of K are sums of squares in K7

(3) Is there a bound P = P(K), depending only on K, such that an
element of K which is a sum of squares in K is already a sum of P
squares in K?

(4) If L/K is an extension of fields, what are the answers to the above
questions in L in relation to their answers in K?

Definition 16.1. If such a P as in (3) exists, it is called the pythagorean
number of K. It is also sometimes called the reduced height of K.

For example P(Q) = 4 by Lagrange’s theorem and P(R) = 1. We use the
notation G,,(K) to denote the set of elements of K* which can be written
as a sum of m squares in K. Thus Gm(K) = Vxz4 4 x2 (K) in the notation
of Chapter 2. Furthermore we have

S(K)-{0} = |J Gm(K)

(using the notation of Chapter 15) and we write this as Goo(K).

There is a host of fields giving a wide variety of results and in this chapter,
we shall take up some of those which can be handled in an elementary
fashion. We would like to calculate Goo(K) in the following important
cases: (a) global fields, (b) fields of transcendence degree n over real closed
fields, i.e. finite extensions of R(X},...,X,), R real closed.
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It is interesting to note that to solve the problem in case (a) we need
to use the Hasse-Minkowski theorem and so we postpone it to Chapter 18
where a definition of global fields is given. For the solution of the problem
in case (b) we need to use the theorem of Tsen-Lang. Indeed, in Chapter 5
we have already done this. As we saw there, we had to make considerable
use of Pfister forms.

In this chapter, we shall be looking at fields K that can be handled in an
elementary way.

In most cases it is neater to consider the multiplicative group K* of K.
Thus to answer the first question we need to know the order of the quotient
K*/K*’. Elements of this quotient are called square classes. Each element
of the square class K* o is a sum of n squares in K* iff @ is a sum of n
squares in K*.

We begin with finite fields and prove the following.

Theorem 16.1. In F, (¢ = p*, p # 2) one half of the elements are
squares. The remaining half can all be written as a sum of two squares. For
p =2, we have F;: = Fja.
2 is an automorphism: (.’z:+y)2 = z24y?
since 2 = 0, and (zy)? = z?y?. Further if 22 = 4%, then z = y (for z = —y
=z =y).

Next let ¢ = p®, p # 2. Let v € F; be any element. Let A = {v — z? |
z € Fg}, B={y* |y € F,}, and let r be a generator of F;. Then the even

Proof. InFja, the mapping z — z

powers of r are just the squares of F} as required. Further |A| = |B| =
(g—1)/2+1=(g+1)/2. Hence ANB # 0, i.e. there exists zo, yo € F,
such that v — z2 = y2. (|

Fields K which are not formally real are easy to deal with in this regard;
for let the Stufe of K be s, so that —1 =#3 +... +t2 (t; € K). Then for
any o € K, we have

o= () - () - () raevn (55

a sum of s + 1 squares in K.

Thus we have the following.

Theorem 16.2. Let K be a non-formally real field of Stufe s. Then each
element of K 15 a sum of s + 1 squares and indeed s < P(K) < s+ 1 (for
—1 15 a sum of s squares and no fewer, so s < P(K)).

As a corollary we have the following.
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Let K be a field of characteristic p. Then each element of K is a sum of
three squares; for K O F, and since s(Fp) < 2 so s(K) < 2 and the result
follows by Theorem 16.1.

Now since there are fields with arbitrarily large Stufe, so given N, there
are fields K, not formally real, in which a sum of squares is not always a
sum of at most N squares. But is there such a bound for formally real
fields? The following example settles this question in the negative.

Let R, = R(X),X2,...,Xs), Ro = R and let K = |J> R, =
R(X,,X2,...), the field of rational functions with real coeflicients in an
infinite number of independent indeterminates X, X,,.... We claim that
the polynomial X? + ... + X2 is not a sum of n — 1 squares in K. For
suppose it is; then on the right hand side only finitely many X’s appear,

say, without loss of generality,
X4 +X2=02(X1,- s Xm) oo+ 2 (Xy ey X))
Then
X+ + X2+ X2, +...4+X2
=¢i 4. P+ X1+ X

which is a sum of m — 1 squares in R(X, ..., Xm), contradicting Corollary
4 of Chapter 2. a

What we have said above is the following.

If s(K) = 2" then 2" < P{K) so that by choosing n large we can get fields
K for which P(K) is arbitrarily large, i.e. P(K) can be made arbitrarily
large for a suitable non-formally real K. The example K = | J;o o R,, shows
that this is true even for formally real fields.

Let now K be any field, not formally real, with Stufe s = s(K). We have
the following,.

Theorem 16.3. P(K(X))=s(K)+1.

Proof. We know that K(X) is also not formally real and indeed s(K (X)) =
s(K) (Theorem 11.8(i)). Hence by Theorem 16.2, s(K) < P(K(X)) <
s(K)+ 1. If P(K(X)) were equal to s(K), then each element of K(X)
would be a sum of s(K) squares in K(X) (note that each element of K(X)
is always a sum of squares, indeed r(X) = (ﬂ?'—l)2 - -'-;—1)2 and —1 is a sum
of squares). In particular
X=f(X)+... +f(X)

where by Cassels’ Lemma (Chapter 2), we may suppose f;(X) € K[X].
Here not all f;(X) are constants. Now equate the coeflicients of the highest
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power of X on the right side to zero (since this highest power is even on the
right side and zero on the left side). We get

a+...+al=0, a; €K
giving s(K) < s, a contradiction. O

Definition 16.2.

(1) K is called quadratically closed if each z € K is a square in K
(ii) K is called pythagorean if any sum of 2 squares in K is itself a square
in K, or equivalently if any sum of squares in K is a square in K or
indeed 1 + y? is a square in K for each y € K.
For such a K, denote by S(K) the set of all elements of K, including 0,
that are sums of squares in K. Then S(K) = K? = {z? |z € K}.

Theorem 16.4.

(1) K quadratically closed = K pythagorean.

(i1) K pythagorean and not formally real = K quadratically closed.
(ill) K real closed = K pythagorean

(iv) K; pythagorean C a field L = K =(\; K, is pythagorean.

Proof. (i) Trivial.

(i) Since K is not formally real, it follows that S(K) = K, i.e. each
element of K is a sum of squares in K and so a square in K since K is
pythagorean; so K is quadratically closed.

(i) If £ = 1 + y® is not a square for some y € K, then K(\/z) is a
proper algebraic extension of K and so is not formally real since K is real
closed. So by the basic lemma (see Chapter 15), there exist z; € K such
that —z = }_ 2%, ie. =1 —y? = }_2? giving —1 = a sum of squares in K
which is a contradiction.

(iv) Let z, y € K, so z, y € K; for all i. Since K; is pythagorean
z? +y? = 2?7 (zi € K;). For any pair of indices i, j we have z; = % z;. (since
all 2z; = £4/2% + y2). Let ig be any fixed index and let j be an arbitrary
index; then *z; € Kj, i.e. z, € K; (for all j) so z;, € (); K; = K and
2 — g2 4 y2. O

Zlo =

Given a field K there is the notion of a smallest pythagorean field K,
containing K - this is inspired by the last part of Theorem 16.4; namely, let
Q = K be the algebraic closure of K and let

K, = ﬂ (all pythagorean subfields K; of 2 which contain K) .

This intersection is not vacuous since  itself is in it (it is pythagorean
because it is algebraically closed, so quadratically closed).
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We have the following.

Definition 16.3. K, is called the pythagorean closure (hull) of K.

It is clearly pythagorean by Theorem 16.4 (iv), and manifestly the small-
est pythagorean field containing K.

Theorem 16.5. If K is formally real, so 15 K.

Proof. Let 2 be the algebraic closure of K. By the remark after Definition
15.4, there exists a real closed field A : K C A C Q as shown.

Q

A

K
By Theorem 16.4(iv), A is pythagorean. Hence K, C A. It follows that
K, is formally real. O

An Example (Ribenboim [R5]). Let P be the smallest pythagorean
field containing the rationals Q, A the field of all algebraic numbers, and R
the field of real numbers. We wish to look at P more closely. We have the
following.

Theorem 16.6. P CANR and is an infinite Galois extension of Q.

Proof. Since A, R are pythagorean, so is ANR; hence P C ANR. Now let
Qo =Q,Q = Q(Va2 + %) (alla, b€ Q)
Q =Q(VaZ+b?) (alla beQ,),...
Qn=Qn-1(Va2+b) (ala beQun),...

Since any positive square free integer m is a sum of two squares iff pjm =
p = 1(4), it follows that

Q =Q(V2,yp) (allp=1(4))
so that [Q, : Q] = 00 and a fortiori [P : Q] = co.
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Next let o be an isomorphism of P (into A). To prove P is Galois, we have
to show that all conjugates of P equal P, i.e. that oP = P. Now o™ !P D> Q
is pythagorean (just check), so by the minimality of P, P C ¢7!P, ie.
oP C P as required.

We now compare P with the field ® of all numbers constructible by ruler
and compass so that by definition ® = {J;=, ®n, where &, = Q.

@l = Q(\/a)all e€Q, a>0 C Rv
®; = &,(Va)all acey, a>0 C R,

Gauss proved the following result regarding the elements z of ®:

Theorem (Gauss). z € R is constructible iff there exists a Galois ezten-
sion K/Q such that z € K, [K : Q] is a power of 2.

First note that Q; C &®; (all ) and so P C ®. Now we have the following.
Theorem 16.7. & is pythagorean (and so P C & again).

Proof. Let z, y € ® and let K, L be Galois extensions of Q of degree a
power of 2 and such that z € K,y € L. Then Q(z*+¢*) C Q(z,y) C K-L
and KL is a Galois extension of Q. But

[KL:Q]J=[KL:KnL|KNnL:Q]
and
Gal(KL/K N L) ~ Gal(K/K N L) x Gal(L/K N L)
It follows that [K L : Q] is a power of 2.

KL

KnL

Q

Now the conjugates of \/z? + y? over Q are ++/(a(z))? + ((y))? where
o is an arbitrary automorphism of KL/Q. Let M be the smallest Galois

extension over Q containing KL and /z? 4+ y?. Let 0,,...,0, be the
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automorphisms of K'L such that

VE@PE T @) ¢ KL
VE@P +@0)F ¢ KL (V@R + (@0))

Von@F + @n@)P ¢ KL (V@@ T @0)F).
forall i = 1,2,...,m -1, and M = KL (V@@ + (@:()P), i =

1,2,...,m.
Now for extension fields K C N, N, ¢ K*, if N;/K and N,/K are
Galois extensions then Ny N, /N; N N; is Galois and

Gal(NlNg/Nl n Ng) o~ G(Nl/Nl N Ng) X G(N2/N] N Ng)
Repeated application of this to M gives
Gal(M/KL) ~ (Z/(2))™.
Thus [M : Q] is a power of 2 and by Gauss’ theorem /(z* + y?) is con-
structible and so in ®. It follows that ® is pythagorean as required.

Remarks.

(i) It is easy to show that P # ®; indeed /(v/2—1) € & but ¢ P.

(ii) If K is a subfield of P such that [K : Q] < oo, then [K : Q] is a power
of 2.

K = Q(z)

Q

Proof. As K is a finite extension of Q, it is simple, say K = Q(z). Since
z € P C &, there exists a Galois extension L/Q containing z. But [K : Q]
is a subfield of ®, and so is a power of 2. O

Theorem 16.8 (Diller-Dress). Let K be a field such that —1 ¢ K2. The
following statements are equivalent.
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(i) K is pythagorean, i.e. K* + K? = K2.
(i) K has no cyclic extension of degree 4.
(ili) K has no cyclic extension of degree 2¥ (v > 2).

Proof. (iii)=(ii) is trivial and (ii)=>(iii) follows because if K has a cyclic
extension of degree 2° (¢ > 2), then since 4|2*°, K has a cyclic extension
of degree 4.

(i)=(ii). Suppose E/K is a cyclic extension of degree 4. Let G =
Gal(E/K) and L an intermediate field K C L C E, H = Gal(E/L). This
quadratic extension L of K exists since G is cyclic of order 4.

E

L = K(Va)

K
We have L = K(1/a), a € K, a ¢ K?. Then since E/L is of degree 2, we

have E = L(y/b+c/a), b,c€ K,c# 0,b+c\/a¢ L% Let e = 1/b+c\/a

and let o be a generator of G. Then H = {¢,0%} and clearly we have

ol(e) = —e. (16.1)
Furthermore
(a(e))? = o(e?) = o(b+ cv/a) = b—cv/a (16.2)
o¥(e-o(e)) = oe-0%e = —c-o(0’e)
=—e-0(—e)=e-0o(e).
Thus

e-o(e)el (16.3)
Now, since a,b,c € K,
(- 0(e) = (o(e))? = & - a(e) - o(e) = & - a(e?)
— b+ cva)b— V@) (by (162)
=b-cla€ K (16.4)
But by (16.3), (e -o(e))* € L? so (e - o(e))? € L? and K, ie. € L2NK =
K?*UaK?. To see this let (z + y\/a)? € LN K (z, y € K). This equals
2?2 + ay? + 2zyJa € K,s0 zy = 0. If 2 = 0 then z + y/a = y/a so
(z+yva) =ay’ €aK? Ify=0thenz+y/a=zso(z+yva)>=2%¢€
K2,
Thus L2 N K C K? U aK? while the converse is trivial.
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If (e-0(e))> € K? thene-o(e) € K so
o(e-o(e)) =e-o(e)
ie.
o(e)-o*(e) = e- o(e).
Cancelling o(e) (# 0) this gives 0?(e) = e, i.e. —e = e (by (16.1)) which
is false. It follows that (e - o(e))? € aK?, ie. b — c’a = az? (z € K) by
(16.4) or @ = b%/(c? + 2?), where note that c? + 22 # 0 since v/—1 ¢ K? by
hypothesis. Now we are supposing K to be pythagorean, so c¢? + z%? € K2.
Hence a € K? which is again false. Thus no E can exist.
(i1)=(i). Suppose to the contrary that K is not pythagorean, i.e. that
forsome a € K, b=1+a* ¢ K?. Let L = K(vb), E = K(/b+ Vb).
Put e = Vb+ Vb, ¢ = Vb—+/b. The four conjugates of e are e, —e,

¢, —c and these are distinct since —1 ¢ K? and charK # 2. But now

¢ = avVb/Vb + Vb (use 1 + a® = b) and being a conjugate of e, there exists
an automorphism o of E/K such that o(e) = ¢, i.e. 0vb= —vb. Then

o%e =cgc=o(avb/e) = —avb/c = —e.
Hence 0% # ¢, so since Gal(E/K) is of order 4, it follows that o is a generator
of Gal(E/K). i.e. E is cyclic of degree 4/K - a contradiction. d

Now it is easy to see that if charK # 2 and b ¢ K? then the field
E = K(v/b+ vb) is a cyclic extension of K of degree 4, for the generator
¢ = Vb+ Vb satisfies 22 = b+ Vb, i.e. (22 —b)? = b, so E/K is of degree

4. The four automorphisms are

01:\/b+\/l;—>\/b—\/l;
021\/b+\/l_7—>—\/b+\/1->
63:\/b+\/5—>—\/b—\/5

04 . E,

since the four conjugates of the generator are the roots of the above quartic.
We have the following

Theorem 16.9.

(i) Let K be a non-pythagorean field and K, its pythagorean closure. Then
there is a field E, K C E C K,, which is cyclic of degree 4 over K.

(ii) If E is pythagorean and K C E is such that [E : K] < 0o, then K is
pythagorean.

Proof. (i) Since K is not pythagorean, char K # 2. Further, we can find
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2
a1, az € K such that a? + a2 ¢ K?. Here ay # 0. Let b= (%’;) +1¢ K?

and let £ = K(Vb+ v/b). Then E is the required cyclic extension of K of
degree 4. Note also that

2
1 2 2
Vot Vo= ) (1414 (2 ViFlek,

2 as az

so E C K,.
(i) Suppose not; then there exist fields L,, Ly such that
KCL,CcL,CE.

Now, neither L, nor L, are pythagorean, and there is no field between
L, and L;. Yet (i) implies there is an F, L, C F C L, and F a cyclic
extension of degree 4 over L;; it follows that ¥ = L,. But there again
exists a (quadratic) field between L; and Ly = F. d

Corollary. Let P be the pythagorean closure of Q as in the ezample (see
Theorem 16.6) and let K be a subfield of P such that [P : K] < co. Then
K=P.

Let us now take a look at question 4 posed at the start of this chapter.
We have the following striking

Theorem 16.10. Suppose that L is an algebraic eztension of K of odd
degree. Then |K*/K*'|=|L*/L*|.

Proof. Consider the commutative triangle

Lt
e NN
Kt LW_) K#

where ¢ is the injection map, N the norm map and M is defined by z — z™,
where m =L : K].
This induces the commutative triangle
_ L*/L*z
) NG«
K* /I{m2 _A'I_' }’{w/]{m2

where B, N, M are the induced maps. Since m is odd, M is the identity
map. Thus B, N define a bijection between L"/L*2 and K*/K*2 a

For even degree extensions, the situation is not quite so simple. We first
have the following
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Definition 16.4. A sequence of maps ALBAC of groups is said to be
ezact (at B) if the image of A under f (C B) equals the kernel of g.

We have the following.

Theorem 16.11. Let L = K(v/d) be a quadratic eztension of K. Then
the following sequence is ezact.

15 (k" dky S K K S0 0 N K
where € is the map induced by inclusion and N i3 the homomorphism induced
by the norm L/K and ¢, 8 are the obvious inclusion maps.

Proof. (i) The exactness at {K* ,dK*"} is trivial: d is not a square in K,
2

so kerf = K* = Im¢.
(ii) € is the map aK* 5aL*’; so the coset aK*’ € kere iff o is a square in
L*. Let

a=(a+ bV/d)? (a square in L*) (16.5)
We have to prove that o = de? or f? (e, f € K*). Now since a € K*, (16.5)
gives o = a® + db?, ab = 0. If a = 0, then a = db?; if b = 0, then a = a?.
(iii) L*/L* B K*/K*" is the map

CVL'.ZAI)]VL/K((I)I{'lz
where a € L*, say a = a + bV/d, a,be K,sokerN = {aL'2|NL/K(a) €
K*’}, say Na = o@ = c? (c€ K*). Let B =c—a=c— (a—b/d). Then
ap? = a(c® + @ - 2¢a) = o Na +@* - 2¢@)
a-Nataa-a—2cae=(a+a@)Na—2cNa
€ K,

say af?=r € K.

Now to show ker N = Ime, we have to show that such an o € K* - L"z;
then the element aL** of the kernel is the image under ¢ of aK* (since
a € K*).

IfB=0then@ =c(#£0) € K*,ie. a=a+b/d € K*,ie. b=0s0
o € K* C K*L*". If B # 0 then by the above calculations o = r(1/B8)* €
K*L* as required. a

As a corollary we have the following.

Theorem 16.12. Let L = K(v/d) be as in Theorem 16.11. Then K*/K*'
138 finite iff L"/L"2 18 finite. More precisely, we have

SIK* /K| <1117 < S 1K KP.
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Proof. First note that
kere =2 : (16.6)
Now look at the maps K*/K"z—va*/L"z-]Y»K*/K*z. We have
(K*/K*")/kere ~ Ime C L*/L*";

hence
* 2
I—K# = |lme| = |ker N| < |L*/L*'| (16.7)
and similarly
L*/L¥ e
|'|k—e/rN_|I = ImN| < |K*/K*"| (16.8)

Hence |K*/K*’| < 2|L*/L**|, using (16.6) and (16.7). Thus |K*/K*’| is
finite if |L"/L"2| is and the first inequality follows. Next by (16.8),
\L*/L*'| < |ker N||K*/K*"| = |Ime||K* /K™
_ IK* /K
kere
Thus |L* /L"2| is finite if |[K*/K *2| is and the second inequality follows.
a

x x2 1 - 2
KK | = 5K K

For extension fields of arbitrary degree the following result is true.

Theorem 16.13. Let L be a finite extension of K of degree 2" -m (m
odd). Then

|K*/K*'| < 27|L*/L*).

Proof. Consider the kernel of the map

©:K*/K* - L*/L*
induced by injecting K into L. Suppose that bK*" is in the kernel (be K*).
Then L contains /b. Now let b,,...,5; be such that the ij"2 are in the

kernel and by,..., b, are multiplicatively independent modulo K ** Then L
contains the field

Kl = K(\/bl,...,\/bt)
of degree 2! over K; but K; C L,sot <r.
Now let ¢ be maximal, so
LK™ ... b K"
generate the kernel of ©. Then the kernel has order precisely 2* and the
result follows. (I
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Better estimates are available if K is not formally real. See for example,
[L2] p. 216, Exercise 6. Indeed we have

Theorem 16.14. Let L be a finite extension of K of degree 2"m (m odd)
and suppose that K is not formally real. Then

|K* /K| < |17/ L")
Proof. To prove this we require to know when there is equality in the left
hand inequality of Theorem 16.12. It turns out that if

1 * 2 * *2

SIE* /K| = |1/ L (169)

then K is pythagorean and L = K(y/—1). To see this we note that (16.9)
holds precisely when

ImG = L*/L*".
By exactness, this is precisely when
ker N = L*,

i.e. when Norma € K** for all a € L*.

Put o = u + vy/d (u,v € K), so that Norma = u? — dv? € K*'. Hence
—d € K* (u = 0,v = 1). Then K? + K? C K?, which means K is
pythagorean and d € (—l)K"2 as required.

Theorem 16.14 may now be proved as follows:

We have a chain of fields

K=MycMiCM;C---CM,CL
where each extension M;,, is of degree 2 over M;, and L does not contain
any extension of M, of degree 2 over M,. By Theorem 16.13 we have
M /M| < 122
Now we are given that K = M is not formally real. Hence none of the
quadratic extensions Mj, over M; is of the exceptional type satisfying
(16.9). Hence
* *2 x *2 .
| M7 /M7 < M7y /M| (0<5 <)
On putting everything together, we get
* x2 * 2 * x2?
|K*/K* | = Mg /Mg | < |L*/L* |

as required. 0

Then there is the question of whether or not L* /L*2 is finite given that
K*/K* is, where L/K is a general extension. By Theorem 16.12, if [L :
K] = 2, then the answer is “yes”. By an easy application of Galois theory,
it can be shown that the answer is again “yes” if [L : K] = 2" and L is
a Galois extension of K. However, in general the answer is “no” even if
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[L: K] =2". A counterexample, elementary but not that easy, is given in
[L2], p. 218-22.
For L D K as in Theorem 16.13, we have the following,.

Corollary.
() |L*/L*’| finite = |K*/K*’| finite.
(ii) L quadratically closed = K quadratically closed. 0

One may prove many more results regarding pythagorean fields. See for
example [L2], p. 251.

Exercises

1. Let s = 2™ be any power of 2 and let K be a field of Stufe s. Let
L = K(X). Prove that P(L) = s+ 1 (s(L) is of course equal to s). (Hint:
—1+ X? cannot be written as a sum of s squares in L.)

2. Let E/F be a cyclic extension of degree 4. Suppose F(+/a) is the unique
field between E and F. Show that @ = 2? + y? (z, y € F).

3. Let E = F(y/2% + y?) be a quadratic extension of F' (where z, y € F).
Show that there exists a field K O E such that K is cyclic of degree 4 over
F.

4. Let K be formally real and suppose |K*/K*2| = 2. Show that K is
pythagorean.

5. Let K be formally real. Show that each ordering of K can be extended
to an ordering of K, the pythagorean hull of K.

6. Let K be pythagorean. Show that |K*/K*2| = oo if and only if K has
infinitely many orderings.

7. Let K be formally real and pythagorean. Show that a quadratic form f
over K is universal if and only if f is isotropic.

8. Show that the following conditions are equivalent:

(1) K is pythagorean;

(1) if a, b are different square classes in K*/K*z, then K has an ordering
at which a, b have different signs;

(iii) if ¢ is a square class (# —1), then there exists an ordering of K at
which ¢ is positive.
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Pourchet’s theorem and related results

The main result to be proved in this chapter is the following (see [P6]).

Theorem 17.1 (Pourchet 1971). Let f(X) € Q(X) be a non-zero
positive definite function. Then there exist fi(X), f2(X), f3(X), fa(X),
fs(X) € Q(X) such that

F(X) = X))+ [F(X) + [S(X) + f2(X) + f5(X).

We shall prove a series of lemmas leading towards a more general result.
We make heavy use of the local-global principle; in particular the Hasse-
Minkowski theorem:.

Let K be a field with charK # 2. For a, b € K*, we denote the quadratic
form X? + aX? + bX? 4+ abX? by [a,b]. For a polynomial f(X) € K[X],
I(f) denotes the leading coefficient of f.

Lemma 17.1. [a,b] represents 0 in K if and only if aX? + bX? + abX?
represents 0 in K.

Proof. The if part is trivial. Conversely suppose [a, b] represents 0 in K:
a? + aal +ba? + aba2 = 0.
If a; = 0, we are through. So let a; # 0. Then using the equation o? =
—aa} — ba3 — aba? we can verify that
a{blaazoy — a1a3)}? + b{a(bazay + ara2)}? + ab(aal + bal)? = 0.
This completes the proof. O
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Lemma 17.2. Suppose [a,b] does not represent 0 in K. Then it does not
represent 0 in K[X] and if f(X) = fH(X) + af2(X) +bf3(X) + abf}(X),
where the fj(X) € K[X]; then deg f = 2maxdeg f;. Further if f(X) # 0,
then [a,b] represents I(f) in K.

Proof. If [a, )] represents 0 in K(X), then
0=f7+af] +bf] +abf},

where, on clearing the denominators, we may suppose f;(X) € K[X]. Then
the leading coefficient of the right side is 0 and this gives a representation
of 0 by [a,d] in K, which is a contradiction.

If all the f; = 0, then f = 0 and the degrees on both sides equal —oo.
So suppose the contrary. Now the degrees will match unless there is cancel-
lation of the highest powers of X on the right side. But that would imply
that [a, b] represents 0 in K giving a contradiction again.

Finally I(f) = I(f2 + aff + bf? + abf}) so l(f) is represented by [, ] in

K O

Lemma 17.3. Let f(X) € K[X] be a non-zero polynomial. Then [a,b]
represents f(X) in K[X] if and only if

(1) [a,b] represents I(f) in K, and
(i) [a,b] represents 0 in K[X]/(p(X)) for each prime factor p(X) of f(X)
in K[X] of odd multiplicity.

Proof. First suppose [a, b] represents f(X) in K[X]:

f=fi+ef] +bf; +abf}.
Then by Lemma 17.2, [a, b] represents I(f) in K.
Next let A(X) = ged(f1, f2, f3, f4) and write f; = Ag; (7 = 1,2,3,4). Then

f = O%g} + ag3 + by + abg})

= Ay,
say. Hence if p|f with an odd multiplicity, then plg. But p f all the g; since
the g; are coprime. The equation g = ¢% + ag3 + bg? + abg} (plg, p fall g;)
modulo p gives (ii) above.

Now the converse: if [a, b] represents 0 in K, it represents 0 in K(X) and
so represents all elements of K(X), in particular [a, ] represents f(X) in
K[X] as required.

So suppose [a, b] does not represent 0 in K. We make use of the following
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identity:
(X7 + aX3 + bX] + abXI)(Y? + aY? + bYy + abY})
= (X111 +aX,Y2 + bX,Ys + abX,Y))?
+a(~X1Y; + Y1 X; — bXoY; + bYs X)?
+5(=X1Ys + V1 X3 4+ aX2Yy — aYa X,4)?
+ ab(—X Y + Y1X4 — X, Y3 + bY2X3)?
= B? 4+ aB? + bB? + abB2,
say. On account of this identity and since I(f) is represented by [a, b], it is
enough to prove the result for monic irreducible f(X).
Now [a, b] represents 0 in K[X]/(f(X)) (non-trivially), i.e. there exist

polynomials v;(X) whose degree is less than that of f, not all divisible by
f, such that

M +ar;+bi+abi=fg (¢#0) (17.1)
Amongst such systems of polynomials v;, select one for which
g # 0 and max deg~y; is least . (17.2)
By Lemma 17.2, deg f + degg = 2max degy; < 2deg f so
degg < deg f.
Now by the division algorithm, write
7 = 99i +8; (17.3)

where either s; = 0 or degs; < degg. Substituting in (17.1) gives (gq1 +
51)? +a(gqz + 52)* + b(ggs + 33)? + ab(ggs + 34)* = f - g, ie.

83 4 as? + bs? + abs? = gh (say.) (17.4)
Again by Lemma 17.2, degg + degh = 2maxdegs; < 2degg so degh <

deg g.
Now multiply (17.1) and (17.4) to get

fg-gh= B} +aB} + bB? + abB}. (17.5)
The congruences v; = s; (mod g), which follow from (17.3) imply that
B; = 0 (mod g) (j = 1,2,3,4), say B; = g -t; where t;(X) € K[X].
Cancelling ¢° in (17.5) (g # 0) gives
fh =12+ atk + bt + abt] (17.6)
where, by the definitions of t; and Bj, degg + degt; = deg B; < degv; +
degs;. Thus
deg g + maxdegt; < maxdeg~; + maxdegs;
< maxdeg~y; + deg g,

max degt; < max degr; (17.7)
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Hence by (17.6), deg f +deg b = 2 max degt; < 2max deg~y; = deg f+degg,
by (17.1) and Lemma (17.2). Now (17.7) contradicts-(17.2), so h(X) = 0.
(17.4) now implies [a, b] represents 0 in K[X], so by Lemma 17.2 [a, b] rep-
resents 0 in K. Since we are supposing to the contrary, this representation
must be the trivial one, i.e. s;(X) =0 for j = 1,2,3,4. Hence by (17.3),
gly; for all j so ¢2|v3 + a3 + by + aby] ie. g|f (by (17.1)). But f is
irreducible and deg g < deg f which is proved below (17.2). Hence g(X)isa
constant, say a. Then (17.1) becomes v +ay2 +by? +aby? = af # 0. Now
apply Lemma 17.2 and we see that [a, b] represents l(af) = al(f) = « over
K, since f is monic ; so [a, b] also represents 1/« in K: if a = o? +aa? +
ba? +aba? then 1/a = a/a® = (a1 /a)? +a(az/a)? + b(as/a)? +ab(as/a)?,
and [a, b] represents af in K[X]. So by the identity, [a, b] represents f(X)
in K[X]. a

Lemma 17.4. Let f(X) € Q[X] be a non-zero polynomial. Then [a,b]
represents f(X) in Q[X] if and only if [a, b] represents f(X) in each Q,[X]
(p = oo included).

Proof. The ‘only if’ part is trivial. To prove the converse we proceed as
follows.

Let ¢*(X)||f(X) in Q[X] where ¢(X) is irreducible and e is odd. Now for
any fixed prime p, factor

0(X) = q1p(X). . 45,p(X)
in Q,[X] into irreducible factors. These ¢;, are all distinct, for if say
qipla(X), then g1,]q'(X); but (¢(X), ¢'(X))=11in Q,[X] since (¢(X), ¢'(X))
=1 in Q[X], as ¢(X) is separable, with charQ = 0.
So the factorization of f(X) into irreducible factors in Q,[X] is

fX) = g1,(X) ... ¢5,,(X) - .,
the ¢;p(X) having the same odd multiplicity e as ¢(X). Hence since [a, b]
represents f(X) in Q,[X] we have, by Lemma 17.3,
(i) [a,b] represents I(f) in Qp;
(i) [a,b] represents 0 in Q,[X]/(g;p(X)) for 1 < j < sp.

These fields Q,[X]/(¢;p(X)), 1 £j < 8p, p=00,2, 3,5, ..., constitute
the totality of all completions of the field Q[X]/(¢(X)). So by the Hasse-
Minkowski theorem, [a, b] represents 0 in Q[X]/(¢(X)) for each prime factor
¢(X) of f(X) in Q[X], of odd multiplicity.

Now [a, b] represents I(f) in Q, for all p, by (i) above; so the form [a, 8] +
(—1(f)X2) represents 0 in Q, for all p. Hence by the Hasse-Minkowski
theorem, it represents 0 in Q. In this representation, if X5 # 0, then [a, b]
represents I(f) in Q, while if X5 = 0, then [a,)] represents 0 in Q non-
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trivially, so is universal (Theorem 11.4). Thus again [a, b} represents I(f) in
Q.
We have proved the following:
(i) [a, b] represents I(f) in Q;
(ii) [a, b] represents 0 in Q[X]/(¢(X)) for all irreducible factors ¢(X) of f(X)
in Q[X] of odd multiplicity.

Hence by Lemma 17.3, [a, b] represents f(X) in Q[X]. a

Lemma 17.5. The form [a,b] represents each element of Q, unless p = oo
and a, b are both positive, in which case it represents all positive elements
of R.

Proof. Let p # oo and let a € Q, be any element. Consider the form
[a,8] + (—a)X? over Q,. Since it is a form in five variables, it represents
0 non-trivially in Q,. In this representation if X5 # 0, then on dividing
by X5 we get a representation of « in Q, by [a, b] as required. If X5 = 0,
then [a, b] represents 0 non-trivially in Qp and so is universal. So again [a, b]
represents a in Q, as required.

For p = o0, the statement is obvious. (|

Lemma 17.6. Let L/K be a separable eztension of degree [L : K| and
suppose [a,b] does not represent 0 in K. Then

(i) for [L: K] odd, [a,b] does not represent 0 in L,
(i1) for [L: K] even and K = Q,, [a,b] does represent 0 in L.

Proof. (1) We use induction on [L : K]. If [L: K] =1, ie. L = K, the
result is obvious. Solet [L : K] = n + 1 where n is even and we suppose the
result is true for extensions of degree less than n + 1. Since it is a separable
extension, we have L = K(a), where irr(a, K') has degree n+1 and elements
of L are polynomials in « of degree at most n with coefficients in K.

Suppose to the contrary that {a,d] represents 0 in L. Then by Lemma
17.1, aX? + bY? + abZ? represents 0 in L: aff(a)+ bf2(a) + abfi(a) =0,
deg f; < n. Thus « satisfies the equation

aff(X) + bf3(X) + abf3(X) =0
and so irr(a, K') divides it:
of2(X) +bfH(X) + bf2(X) = i k)-H(X)  (178)

Here the degree of the left side, which is at most 2n, is even since the
coeflicients of terms of highest degree in X cannot cancel out otherwise we

would get a relation aa? + bb2 + abc? = 0, where a,, b,, c, are the leading
coefficients of f1(X), f2(X), f3(X). That is, the form aX? + bY'? + abZ?
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represents 0 in K and so [a, b] represents 0 in K which is contrary to the
hypothesis.

Hence degh < n — 1 and odd. So A(X) has an irreducible factor p(X)
of odd degree. Let 8 be a root of p(X) and divide f1(X), f2(X), fs(X) by
p(X):

H(X) = a(X)p(X) + n(X)

f2(X) = (X)p(X) + 72(X) (17.9)

f3(X) = g3(X)p(X) + 73(X)
where degy; < degp for j = 1,2,3. Here not all v;(X) can be zero, oth-
erwise p(X)| each f;(X) so p?| each sz i.e. plirr(a, K) - h by (17.8). But
p firr(a, K) since this would give irr(a, K) = p (or p = constant) and this
is not possible because degp < n — 1 < n + 1 = deg(irr(a, K)) and p(X) is
a proper polynomial (it has a root §). Hence p?|h and so we could cancel
a factor p?(X) right through (17.8) and go on doing this till we arrive at a
set of equations (17.9) with not all y;(X) = 0. So we may already suppose
not all v;(X) are zero in (17.9).

Now [K(8) : K] < n+ 1 and odd. So by the induction hypothesis [a, b]
does not represent 0 in K(3). Now replace f1, f2, f3 in (17.8) by the
expressions (17.9) and put X = j:

ari(B) + by} (B) + abyi(B) = 0,
where not all 4;(8) = 0, since degy; < degp and J is a root of the irreducible
polynomial p(X). Hence by Lemma 17.1, [a, b] represents 0 in K(3). This
is a contradiction to what was said above.

Remark. Actually the above result is just a special case of Springer’s the-
orem in its full generality as was Theorem 3.7. The general result says
that any quadratic form is isotropic over L if it is isotropic over K if the
extension L/K is a separable extension of odd degree. In Theorem 3.7 the
quadratic form was a sum of squares while in (i) above it is simply [a, b].
(ii) The field L must contain a quadratic extension of Q, and for this
there are only finitely many possibilities. Further there are only finitely
many possibilities for a, b up to a square factor. Hence there are only
finitely many cases to look at. One has to distinguish between —1 being a
quadratic residue or a non-residue. These are easily cleared. a

The Local Theorem. Leta, b, c € Q, (p = oo included). Let f(X) €
Qp[X] be a non-zero polynomial, separable (i.e. square-free) and of degree
2n. For p = 0o, suppose in addition:

() ifa, b, c>0, then f(X) is positive definite;

(B) fa, b>0,c<0, then f(X) is not negative definite and n is odd.
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Then there ezist five polynomials fi1(X),...,fs(X) € QP[X]; such that
() f=fl+af} +bf}+abff+cfl,
(i) deg(f —cff)=2n,
(iti) ged(f1, f2, f3,fa,fs) =1

Proof. If [a,b] represents 0 in Q, (p finite or co) then it represents 0 in
Qp(X) so it represents all elements of Qp(X); in particular it represents
F(X). On taking f5 = 0, we get the result, noting that condition (ii) is then
trivial, while (iii) follows since if g| all f; then g?|f, which is false since f is
separable. So in future suppose [a, b] does not represent 0 in Q,.

First let p be finite.

Case 1. f(X) has all its prime factors of even degree.

Let p(X) be such a factor. The field Q,[X]/(p(X)) is an extension of
Q, of degree equal to the degree of p(X), which is even. Hence by Lemma
17.6, [a, b] represents 0 in Q,[X]/(p(X)). Also [a, b] represents I(f) in Q, by
Lemma 17.5. Hence by Lemma 17.3, [a, b] represents f(X) in Q,[X] again,
so0 our result follows with fs = 0 again.

Case 2. f(X) has a prime factor of odd degree.

Call it p(X'), where without loss of generality, degp < n; for otherwise if
f = p- g where degg < n then ¢ has a factor of odd degree less than n,
which will do instead of p(X) to begin with.

Lemma A. There exists a polynomial g(X) of degree n, g J f and poly-
nomials f2, f3, fa, not all zero and each of degree less than n such that

f(X) = aff(X) +bf3(X) + abfi(X)  (modg(X))
ie. f=af?+bf}+abf}+ gh,s0degh =n since deg fa, f3, f1 < n.

Proof. We have the following subcases.

1. n even (where deg f = 2n > 0). Let g(X) be any irreducible polynomial
of degn which J f(X) (there are an infinity of such polynomials). Let L =
Q,[X1/(9(X)) so that [L : Qp] = deg g = n is even. By Lemma 17.6, [a, b]
represents 0 in L; so by Lemma 17.1, the form aX? + bY? + abZ? represents
0 in L and hence represents all elements of L, in particular f(X) + (¢(X)),
i.e. there exist polynomials fz, f3, fs € Qp[X] such that

a(f2 +(9))* + b(fs + (9))* + ab(fa +(9))* = f + (9),
af? +bfZ + abf} = f (mod g) as required. Note that the degrees of f,, f3,

fa can always be made less than n = deg ¢ by dividing by ¢ and considering
the remainders instead.
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2. n odd. As we are in Case 2 of the theorem we may suppose f(X) has a
prime factor p(X) of odd degree at most n. If this p(X) has degree n, then as
f(X) is separable, there exists a { € Q;, sufficiently near 0 in the topology
of Q,, i.e. divisible by a high power of p, such that f(X) - a€? also has a
prime factor of degree n; call it g(X). (This follows from a problem given
in Bourbaki: [B3], Chapter 6, Problem 12, p.465. However it is desirable
to dispense with the rather deep machinery of Bourbaki and so we give an
elementary and easier reference; see the Appendix to this chapter.)

Thus f(X) — a&? = 0(mod ¢(X)) which solves the required congruence
with f = ¢, fs = f4 =0.

If deg p(X') < n, we proceed as follows: select any irreducible polynomial
g(X) of degree n — deg p (which is even and positive) and which does not
divide f(X). As in Subcase 1 above, if L = Q,[X]/(¢(X)) so that [L :
Q,] = deg ¢, which is even, then,

f(X) = adf(X) + bg3(X) + abg3(X)  (modg(X))

is solvable. Also f(X) = 0 (mod p(X)) since p|fi.e. f(X)= a0%+50%+ab0?
(mod p(X)) is solvable. Letting g(X) = p(X)- ¢(X) we get the lemma.
a

Lemma B. The local theorem holds with c = —1. More ezplicitly let f(X)
satisfy the hypothesis of the local theorem. Then

F(X) = fH(X) +aff(X) + bf3(X) + abf{ (X) - f3(X)
where deg(f + f§) = 2n and ged(fy, f2, f3, fa) = 1.

Proof. By Lemma A, for any ) € Q. we have

Ag + A-1h\? Ag — A~1h\?
f=(———g - >+af§+bf§+abf3~(———g 5 )

= fi +aff +b0f] +abff —
as required. However, we must check the other conditions: let

g X)=apn X" +...
MX)=B.X"+....
Then
f(X):anﬂnX2"+...,
s0

Aan — 2718\
f+f52=a,,,8,,X2"+(a—2£> X+ ...

and this has degree 2n if and only if A2 + 8, /a, # 0. Thus if we avoid just
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these two values of A, then

deg(f + f3) = 2n.

Next, f2, f3, f4 can have only finitely many irreducible common factors.
Let p(X) be such a factor; we shall show that if ) is suitably chosen then
p(X) J A1(X). This will complete the proof of the last condition (iii).

Now p Jboth g and % for then p?|f which is false since f is separable.
We see that p|f, if and only if A2g + h = 0 (mod p(X)). We claim that this
happens for at most one value of A2, i.e. for at most two values of A:

Mg+h=0(p), Mg+h=0(p)
implies
(A1 =2ADg=0(p), (A]—23)h=0(p),

which implies p|g and p|h unless A? = )3, as required.

So if A avoids these two values, then p J f;. Since p(X) can have only
finitely many possibilities, we need only select A avoiding these correspond-
ing values and the two earlier ones. Since Q, is infinite, such a selection of
) is possible and all the requirements of Lemma B are satisfied. d

Proof of the local theorem for p # 0o0. Let ¢(X) = (—1/c)f(X) and apply
Lemma B to ¢(X). So there exist ¢, ¢2, ¢3, ¢4, &5 € Q,[X] such that
(1) ¢ =¢%+ad] + b4} + abs] — 43
(2) deg(d +42) = 2n
(3) ged(d1,d2,03,44) = 1.
By Lemma 17.5, [a, b] represents (in particular) —c:

—c =1} +arl + brd +abrl.

Then
f(X) = —cd(X)
= —c(¢? + ad} + bg2 + abd? — 42)
= (r} + ar] + b + abr{)(4? + ad; + b4 + abs]) + co3
=(rié1 +aryp, +...)2 + al.. .)2 + b(.. .)2 + ab(.. )% + cp?
= f{ +af] +bf] +abf + cf?

where fs = ¢5, fi = r1d1 + 71202 + .. ., etc.
We now have to verify (ii) and (iii) of the local theorem:

(i) deg(f — cf?) = deg(—cé — c¢?) = 2n by 2 above.
(i11) ged( f1, f2, fa2, f4) = ged(r11 +arads + brads + abrads, —r1d2 + 1261 —
brags +brogs, —r193+r3d1+arydy —ar1dy, —r1¢s+rady —r2ds +r3de) =
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(#1, @2, #3, ¢4) since the connecting determinant, which is
ry  arg brs  abry

T2 —-r ng —bT3
rs —argy —n ary
T4 T3 —r2 N

evaluates to

~(r? +arl + br? + abri) = -t #0.
We have used the generalization to four terms of the result that (g1,92) =
(agr + bga,cq1 + dga) if ad — bec # 0.

But (41, 62,85, 44) = 1 by (3) above, so (f1, f2, f3, f4) = 1. This com-
pletes the proof of the local theorem in the non-archimedean case.

Finally, let p = oo, so that Q, = R. Since [a, b] does not represent 0 in R
then clearly a, b > 0. We have again to consider cases.

Case 1. f(X) has a factor of degree n in R[X] and c < 0:
Write —c = r%2. Now we want

f=f +aff +bf3 +abfi — (rfs)°
which is the case ¢ = ~1 and, as in Lemma B, we get the result.

Case 2: ¢ > 0. Then f is positive definite by (o) and of course separable.
So the irreducible factors of f(X) in R[X] are all quadratic, which we see
by factorizing f(X) in C[X] as:

FX) = JT(X = o) [T(X = (8 +ir,)(X = (85 = iry)-
j=1 j=1

If to the contrary r > 0, then take X rational satisfying a,_; < z < a,
ifr>2 X < aif r = 1, (without loss of generality we suppose a; <
... < a,). Then for this value of X, f(X) < 0 since the complex factors are
always positive.

Further the quadratic factors of f are all to the exponent 1 since f is
separable. Denote any such factor by p(X). Then R[X]/(p(X)) ~ C and so
(@, b] represents 0 in R[X]/(p(X)). Also [a, b] represents I( f) by Lemma 17.5,
since I(f) > 0, as f is positive definite. Hence by Lemma 17.3, [a, b] repre-
sents f(X) in R[X] and the result follows with f5 = 1.

Case 3. f(X) has no factor of degree n in R[X]: Let the factoriztion of
f(X) in R[X] be

X=X -1).. (X=X + /X +1)...(XEP+8,X +7,).
Hence 2n = r + 23, so 2|r and we can always get a factor of f(X) of degree
n unless r = 0. So r = 0 giving s = n, which is odd.
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Now if I(f) < 0, then f is negative definite, since each factor X? + 8X +
v = (X +%£)2+(32) > 0 because D = % —4y < 0. So ¢ > 0 for
otherwise, by hypothesis, f is not negative definite (don’t forget a, b > 0, n
is odd). But then a, b, ¢ > 0, so f is positive definite. It follows that f =0,
which is a contradiction. Hence I(f) > 0. So f is positive definite and the
factorization of f(X) is

FX) =X+ X +m) ... (X7 +8,X + ),

where s is odd and all factors are distinct since f is separable. Then exactly
as in Case (ii) above we get the theorem.

Note that once f is shown to be positive definite (as in the above or in
Case (ii)) we could use the fact that such an f is a sum of two squares in
R(X); see Theorem 4.1.

Lastly note that a, b cannot have opposite signs for then [a, b] represents
0 in R which we have supposed is not the case.

This completes the proof of the local theorem. O

Remark. The hypothesis (a) and () in the theorem are necessary.

Proof.  Clearly (i) implies (a). To see that (i) and (ii) implies (3) we
proceed as follows: let a, b > 0, ¢ < 0, and suppose to the contrary that f
is negative definite, where deg f = 2n, n odd. We have

f=ft+aff +bf+abfstcfi
deg(f — cf?) = 2n.

Write a = af, b = b}, —c = ¢ and put g1 = f1, g2 = a1fz, g3 = b1 fs,
94 = a1b1f4, gs = c1 fs. Then
f=0i+g3+93+9i-9

with deg(f + ¢2) = 2n, ie. f+ g2 = 9%+ g2 + g7 + g3; so by Lemma 9.2,
maX;<;j<sdegg; = n. Without loss of generality let degg, = n. Since
deg(f+9¢2) = 2n, deg gs < n. Thus the highest term in g; + g5 cannot cancel
out for both signs, i.e. deg(g1  gs) = n for at least one sign. Moreover, as
n is odd, ¢; + g5 has a real root 8 (the sign chosen so that the degree is n).
Now put X = 6 in the relation f = (g1 +95)(91 — g5) + 9% + g7 + g2 to give,
since f is negative definite,

0 < g3(6) +93(6) + 6i(8) = f(6) < 0.
It follows that f(€) = 0. But f is separable, so f'(6) # 0, f(X) is continuous
at X =4, f(8) =0, and f'(8) # 0. Hence f changes sign at 8, contradicting
the fact that f(X) is negative definite. This completes the proof of the
remark. (I
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The Approximation Lemma. Let f(X) be as in the Local Theorem, i.e.
f= f12 + af22 + bf32 + abf42 + Cf52, deg(f - Cfsz) = 2n, ng(fl’f2,f3,f4) =
1. Let | |, be the valuation defined by the topology of Q,. Then there
ezists n > 0, such that for all polynomials g(X) € Qp[X], with degg < n,
l9(X) — fs(X)|p < n, the polynomial f(X) - cg*(X) is of degree 2n and is
represented by [a,b] in Qp[X].

Remark. If f(X)=ao+a1X+...+anX", then by |f|,, we simply mean
maXo< j<n |@jlp. If |f — glp is small, we say f is near g.

The moral of the Local Theorem is that [a, b] represents f — cf2? while the
moral of the Approzimation Lemma is that given g near fs and that [a, b]
represents f — cf2, we have [a, b] represents f — cg?.

For a proof of the Approximation Lemma see the Appendix to this chap-
ter.

The Global Theorem. Leta, b, c € Q*. Let f(X) € Q[X] be a non-zero
polynomial of degree 2n. Suppose

(@) whenever a, b, ¢ > 0, f is positive definite;

(B) whenevera, b> 0, c <0, f is not negative definite and n is odd.
Then there ezist fi, f2, f3, fa, f5s € Q[X] such that

(1) f=f+aff +bff +abfi +cfs;

(2) deg(f ~cf2) =2n.

Proof. We may suppose f is separable for, writing f = ¢2f,, it is enough
to prove the result for f;.

Let @ = {2,3,5,7,...,00} be the set of all primes of Q and let T'= {p €
Q|[a, b] does not represent 0 in Qp}.

We may disregard the infinite prime as [a, b] represents 0 if and only if
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aX? 4+ bY? 4+ abZ? represents 0 (see Lemma 17.1); and for the case of three
variables if the form represents 0 in all but one local Q, then it represents
0 in that remaining local @, and so in Q by the Hasse-Minkowski theorem.

In T is @, then [a,b] represents 0 in all Q, and so in Q and so in Q(X).
Hence [a, b] represents all elements of Q(X), in particular f(X); and the
global theorem follows with fs = 0.

Let T # 0. For p € T, there exist fip, f2p, f3p, fap, fsp € Qp[X] satisfying
the conditions of the local theorem. Then for each p € T, find an 5, > 0
using the Approximation Lemma, such that if ¢(X) € Q,[X], degg < n,
l9(X) = f5p(X)lp < 7p, then

f — cg? is of degree 2n and is represented by [a, b] in Q,[X]. (17.10)

By the weak approximation theorem on valuations, there exists a poly-

nomial f5(X) € Q[X] such that

1£5(X) = fsp(X)lp <mp

for all p € T. Then f(X) — cf3(X) € Q[X] C Q,[X] and is of degree 2n
(since fs is close to fsp for all p € T, so the highest terms cannot cancel out
as they do not cancel out in f — ¢f3,), and is represented by [a, b] in Q,[X]
by (17.10),for all p€ T. For p ¢ T, f —cf? is represented by [a, }] in Q,[X]
by the definition of T. Thus for each p, the polynomial f(X) — cf2(X),
belonging to Q[X], is represented by [a, ] in Q,[X]. Hence by Lemma 17.4,
it is represented by [a,}] in Q[X], i.e.

f=fl+aff +bfs +abff +cfs. m
We are now in a position to prove our main theorem.

Theorem 17.1 (Pourchet). Let f(X) € Q[X] be a positive definite poly-
nomial; then f(X) is ¢ sum of five squares of polynomials in Q[X].

Proof. Take a = b = c = 1 in the global theorem. We see that f is of
even degree, say 2n. The condition deg(f — f2) = 2n is a side condition,
the main result being f = f + f3 + f§ + f + fZ, f; € QIX]. O

Not all positive definite functions require their full quota of five squares
for the representation. We wish to classify those polynomials which can be
expressed as a sum of four squares. We have the following.

Theorem 17.2 (Pourchet). Let f(X) € Q[X] — {0}. The following
conditions are equivalent:

(i) f(X) 1s a sum of 4 squares in Q[X];

(i) I(f) > 0 and for all p(X)|f(X), where p(X) is irreducible and of odd
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multiplicity as a factor of f(X), the Stufe of Q[X]/(p(X)) is at most
2;

(i) f(X) is positive definite and in Q2[X], every prime factor of f of odd
multiplicity has even degree.

Proof.  The equivalence of (i) and (ii) follows from Lemma 17.3 with
a = b =1, noting that every rational is a sum of four rational squares.

Proof of (i) implies (iii). Clearly f(X) is positive definite. If p*(X) |
|£(X), where p(X) is irreducible and e is odd, then by Lemma 17.3 again,
[a,b] = [1,1] represents 0 in Q2[X]/(p(X)). Since the Stufe of Q, = 4,
[1,1] does not represent 0 in Q2 and the degree of p(X) has to be even by
Lemma 17.6 as required.

Proof of (iii) implies (i). We shall show that f(X) is a sum of four squares
in each Q,[X] (p = 2, 3,...,00). Then by Lemma 17.4, f(X) is a sum
of four squares in Q[X]. Now f(X) is positive definite, so a sum of four
squares in Qq[X] = R[X] (indeed a sum of two squares, by Theorem 4.1)
and by Lemma 17.3, f(X) is a sum of four squares in Q2[X].

For p # 2, 0o, [1,1] represents 0 in Q,, hence in Q,(X) and so is universal
in Qp(X). Thus in particular, [1,1] represents f(X) in Qp(X) hence in
Q[X]. O

For quadratic polynomials, we have a very simple condition for being
expressible as a sum of four squares:

Theorem 17.3 (Pourchet). Let f(X)=aX?+bX +c € Q[X], a #0.
Then f(X) is a sum of four squares in Q[X] if and only ifa > 0 and 4ac—b?
is a sum of three squares in Q.

Proof. We have f(X) = 1{(aX + £)? + (4ac — b?)/4}. First suppose a > 0
and 4ac — b? is a sum of three squares in Q. Then 1/a, being a positive
rational, is a sum of four squares in Q, while the curly bracket above is
visibly a sum of four squares, so by the Euler identity, f(X) is a sum of four
squares in Q[X]. a

Conversely let aX? + bX + ¢ = f} + f} + f# + fi, where the f;(X) €
Q[X]. These f; are necessarily linear for otherwise, by equating to zero the
coeflicients of the highest power of X, gives 0 as a sum of squares in Q.
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Thus
4
aX?+bX +c=) (a;X +b;)
1

=(Xa)x2+ (2 asb) X+ 382
Then

dac—- b =4 (zaz) (Z b?) -4 (X:ajbj)2
=4 [(Z a,-b,-)2 + three more squares] —4 (E“fbf)2

= asum of three squares.

a

The following result characterizes polynomials that can be expressed as
a sum of two squares.

Theorem 17.4 (Pourchet). Leta € Q* and let f(X) € Q[X]|—{0}. The

form X? + aX2 represents f(X) in Q[X] if and only if:

(i) it represents I(f) in Q;

(i1) for each irreducible p(X)|f(X), with an odd multiplicity, the field
Q[X]/(p(X)) (as an exiension of Q) D Q(v/—a).

Proof. First suppose
f=fl+af] (17.11)
In Q[X]/(p(X)), this becomes
FX) + (X)) = {F(X) + (p(X D} + {afF (X) + (X))},

ie 0= ?i +E?§ (since plf), ie. —a = ?3/?2 so /=@ = f,/f, as required.
To prove (i) equate the leading coefficients on both sides of (17.11). If
the highest degree terms are of the same degree in each of f, f2, f2 then
we get I(f) = (I(f1))* + a(i(f2))*.
If deg f = 2n and deg fZ = 2n, deg f7 < 2n or deg f? < 2n, deg f? = 2n,

then we get I(f) = (I(£1))? or a(I(f2))*.
If deg f is odd, then deg f2, deg f2 exceeds deg f and we have a cancel-
lation:

(I(£1))? + a(l(£2))* = 0.
So X7 +aX? represents 0 in Q, so in Q(X) and hence represents all elements
of Q(X), in particular it represents f(X).
To prove the converse, first let f(X') be irreducible and monic. Suppose



256 Squares

E = Q[X]/(f(X)) D Q(v/—a) = F. Then —a is a square in E, i.e. there
exists g(X) € Q[X] such that

a=¢(X) (mod f(X)),
ie a+ g% =o(f).

Q(V-a)=F

Q

Now E = Q(8), 6 a root of f(X). Then
f(X) = JJ(X - 69) = Npq(X - 6)
= Np/q(Ngsr(X - 0)).

We have Ng/p(X — 0) = g(X) + v/=ah(X); for any extension E/F, if
o1,...,0, are the embeddings of E (over F) in any algebraic closure and if
f(X)=as+a1X +...+a X" € E[X],
then, by definition Ng,;p(f(X)) = IT; fo(X), where fo(X) = gi(ag) +

oi(a))X + ...+ 0i(a,)X"). So
F(X) = Nr/g(9(X) + V=a - h(X))
= (9 +V~ah)(g - V=ah)
= g% + ah?.
If f(X)is general, then an argument similar to that in the proof of Lemma
17.3 gives the result, the identity required being

(X} +aXD)(Y? +a¥7) = (X111 +aXoY2)’ +a(XNiY2 - Xo11)2 g

Appendix for Chapter 17

First we deal with Subcase 2 (n odd) of Lemma A regarding the factor-
ization of f(z) — aé?.

Lemma (i). Let u(X),v(X) € Qp[X] have precise degrees r, s and suppose
that u(X),v(X) have no common factors. Then there is a neighbourhood
M of u(X)v(X) in the space of polynomials in Qp|X] of degree r + s such
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that every H(X) € M factorizes
H(X) = up(X) - vy (X)

where uy (X ), va(X) have degrees r,s respectively and they are near u(X),
v(X).

Proof. See the proof of Lemma 4.1 of Chapter 6, p. 105, of Cassels [C2],
which assumes an additional condition but which can be easily adapted to
give a proof of what we need. a

Now we give a proof of the Approximation Lemma as promised earlier.
We need the following

Lemma (ii). Let fi,...,fm € QplX] with no common factors and
max(deg f;) = n. Then every s € Qu[X] of degree at most 2n can be

3
put in the form

s=Xf;h; (%)

where h; € Qp[X],degh; <n.

Furthermore there is an e > 0 depending only on f1,. .., fm such that the
h; can be chosen with

lhjl <elst (1 <5 <m),

where for f(X) € Qp[X], we denote by |f| the mazimum of the value of the
coefficients: |Za; X?| = max|a;l,.

Proof. Since the f; have no common factor, there are certainly h;(X) €
Q,[X] satisfying (*).

Without loss of generality put deg fi = n. For j > 1let h; = u;f; + v;
where uj,v; € Q,[X], and degv; < n. We may replace the h; by

hi +Zujfj, vi(3# 1)

and then degh; < n (j # 1). Clearly degs < 2n now implies deg by < n.

In particular, there are hg-r) € Q,[X] of degree at most n such that

YorPf =X (0<r < 2n).
j

If now s(X) = g" s: X" (s, € Qp), we may take

hi=3 b,

Then
D hifs = s and Ihy] < [s|max|h| = els],

say. O
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The Approximation Lemma. Letc; € Qy(1 < j <m). Let g € Qp[X]
be of degree 2n and square-free. Suppose g is representable as

gzzcjf]?,

where f; € Qp[X], deg f; < n. Then so is every g* of degree 2n in some
p-adic neighbourhood of g.

Proof. Without loss of generality put |¢j|p <1 (1 £ j < m). We note that
Zci(f; + k)t = Ec:_,-fj2 + Z2¢;fih; + Zc;h?. Since g is square-free, the f;
have no common factor.

Now let e be as in Lemma (ii) above, but with 2¢; f; instead of f;. Suppose
that

g7 —g| < 1/262.

By Lemma (ii), we may choose h; so that

> 2¢;fihi =g" g,
i

|hj| < elg — g% < 1/2e.
Then
* * 1 *
6" = D eilfi +h)* = 1) ek < eFlg”* — g < 5lg* — gl
We now proceed by successive approximation. Suppose that we have already
found F; € Q,[X] of degree at most n such that
|Fj| < 1/2e,
and (1/2¢%) > |¢* — 2 ¢l fi + F;)?| = n (say). Consider the following sum,
where the h; are to be determined: Y c;(f; + Fj + h;)?; this is
D ocilfi+F) 42> cifih; +23 ¢;Fjh;+ Y cihl.
We may choose the hj so that 3" 2¢;f;h; = ¢* — Y ¢;(f; + F;)?,
;] < en.
Then
lg" = > c;(f5 + Fj + h;)*| < ma-x{m?-x |2¢; thjl,m;.lx A}

Here |2¢;Fjh;| < 55 - en < /2, |hj|* < 2n? < n/2.
Hence we may replace F; by F;+h; and n by /2. The F; clearly converge
to limits F} and ) c;(f; + F})? = g* as required. d
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Examples of the Stufe and pythagoras
number of fields using
the Hasse-Minkowski theorem

We now make use of the Hasse-Minkowski theorem and discuss examples
of the Stufe and pythagoras number of fields, so that this chapter is really
a sequel to Chapters 3 and, partly, 16, except that they were free of the
Hasse-Minkowski theorem.

We shall take up algebraic number fields first and give, to begin with, a
quick survey of some preliminaries that we shall require.

Let K be an algebraic number field, i.e. a finite extension of Q with say
[K : Q] = n. For a rational prime p, we have the decomposition in K

(p)=p"...

(1) ep is called the ramification indez of p over p.

(2) If Ngjq(p) = p’?, then f, is called the residue class degree of p over
.

We have the fundamental relations

(3) () T,y enfs =
(i1) [Kp : Qpl = epfo.

(4) If p is an infinite prime of K (X can be Q), i.e. p is either one of the
r real embeddings of K in R or one of the 2s complex embeddings of
K in C, so that r + 25 = n, then K, = R if p is real and K, = Cif p
is complex.

(5) If K is the cyclotomic field Q(e2™*/™) (m odd) and p is a prime factor
of pin K, then e, = 1 and f, is the order of 2 modulo m, i.e. the
least positive integer f such that 2/ = 1 (mod m).

For a detailed discussion of all these results see [B2] or [O1].
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Theorem 18.1.

1 ifp=1(4).
s(Qp)={2 ifp=3(4).

Proof. First let p be odd. The quadratic form X? + X? + X? represents
0 nontrivially in Q,; see [B2], page 50. It follows that s(Q,) < 2. Now
if p = 1 (4), the congruence —1 = X? (mod p) is solvable in Z and so by
Hensel’s Lemma, —1 = X? is solvable in Qp; hence 3(Q,) = 1, if p = 1(4).

If p = 3(4), we know that —1 = X? (mod p) is not solvable in Z, whereas
-1 =X?4+Y? (mod p) 4. So again by Hensel’s Lemma, s(Q,) = 2, if
p = 3(4).

Finally for p = 2, the form X2 + X7 + X? 4 X7 does not represent 0 in
Q2 whereas X? + ... + X2 does; hence s(Q2) = 4 as required. O

One may similarly prove the following,.

Theorem 18.1'. Let K, be a p-adic field and p the rational prime lying
below p. Then

1 if pfr = 1(4),
s(Kp)=14 2 if pP» =3(4) orif p=2 and [K, : Q;] is even,
4 if p=2and [Kp:Q;]is odd.

While considering cyclotomic fields, we shall give proofs of those parts of
this result that are needed.

Suppose now K = Q(«) is an algebraic number field of degree n with
irr(a, Q) = p(X') say. The number of distinct orderings of K is equal to the
number of real roots of p(X) = 0 (always distinct since p(X) is irreducible
and separable). An element B of K is said to be totally positive, written
B >>0,if 8 > 0 under all orderings of K.

In 1902, Hilbert conjectured that every totally positive 8 in K is a sum
of four squares in K. The first published proof of this was given by Siegel
[S7] in 1921. Using the Hasse-Minkowski theorem we can easily prove the
following,.

Theorem 18.2 (Hilbert-Siegel). Let B € K be totally positive; then 8
18 @ sum of four squares in K.

Proof. Consider the quadratic form
XP+ X2+ X2+ X2 - X

over I{p. If p is finite, this represents 0 in K, being a form in five variables.
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If p is infinite and complex, K, = C and the form again represents 0 in
C since C is algebraically closed. Finally if p is infinite and real, then
K, =R. Now 8 >> 0 and so 8 > 0 in R, i.e. the form is indefinite and
again it represents 0 in R. Thus it represents 0 in all K, and so by the
Hasse-Minkowski theorem it represents 0 in K. In this representation, if
Xs # 0, then B = (X1/X5)* + ... + (X4/X5)? as required. If X5 = 0,
then X7 + ... + X7 represents 0 in K nontrivially and so is universal. In
particular it represents B in K as required. This completes the proof. O

If K is totally complex then (vacuously), each element of K is totally
positive and so a sum of four squares in K. In particular
—1=a?+al+al+al (aj € K).

Hence we have the following.

Theorem 18.3. Let K be a totally complez (i.e. not a formally real)
algebraic number field. Then s(K) < 4.

Remarks.
1. Theorem 18.2 says that if K is any algebraic number field, then P(K) < 4.
2. If K is any field which is not formally real, then we have already seen
(Theorem 16.2) that

(K< P(K)<s(K)+1
Here both extremes are possible:
(i) K = Fza, the finite field of 2% elements; then s(K) = 1 and indeed each
element of K is a square in K (see Theorem 16.1) so P(K)=1,0or K =C,
s(C)=P(C)=1.
(ii) K = Fs; then P(K) =2, s(K) = 1.

Using the powerful Hasse-Minkowski theorem it is easy to settle the que-
siton of the exact determination of s(K) for any algebraic number field K.
Indeed s(K) = 1, 2, 4 (or oo if K is formally real). Further s(K) = 1 iff
i = /=1 € K. Thus the problem boils down to deciding whether s(K) = 2
or 4. We have the following.

Theorem 18.4. Let K be a totally complex algebraic number field, not
containing /—1. Then s(K) = 2 iff for each prime p of K lying above 2,
the local degree [Ky, : Q2] (= epfp) is even; otherwise s(K) = 4.

Remark. If(2) = p...is theideal factorization of 2in K and Nk qp =
25 then [K) : Q2] = epfy and the requirement for s(K) to be 2 is that
2 | ep fp for each p.
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Proof. We shall assume Theorem 18.1' in the proof. By the Hasse-
Minkowski theorem, s(K) < 2 iff s(K,) < 2 for all completions K, of
K at p. First let p be infinite. Since K is totally complex, p is never real
and so K, = C and s(C) =1 < 2. Next let p be an ideal factor in K of an
odd rational p. Since s(Q,) < 2, it follows that s(K;) < 2. Finally let p be
an ideal factor of 2 in K. We have [K) : Q2] = ¢, f; and s(Q;) = 4. Now it
is well known that

s(Kp)=4iff [Kp : Q2] is odd (18.1)

(indeed ‘<’ is Springer’s theorem).
So s(K,) < 2 iff ey fp is even. Thus s(K,) < 2 for all p of K iff at least
one of ey, fp is even for each p lying above 2. O

Remark. The proof of the implication in (18.1) is well known in fact for
general quadratic forms. When K is the cyclotomic field, we shall give
a simple proof of it later. Right now we deduce some easy corollaries of
Theorem 18.4.

Corollary 1. Let K = Q(v/—d), 1 < d, a square-free integer. Then
s(K) =2 iff d is a sum of three squares in Z.

Proof. If —d =1 (8), then (2) splits as pp’ in K and so ey, ey, fp, fpr are
all 1. Hence s(K) = 4. In all other cases, one or the other of the following
occurs:
(2) remains prime: (2) = p. Then
ep = 1, fp =2

(2) ramifies: (2) = p?. Thene, =2, f, = 1.

In both cases s(K) = 2.

Finally —d =1 (8) iff d = 7 (8), iff d is not a sum of three squares in
Z. O

Remark. The precise statement for the splitting of (2) in Q(/m) (m
square free) is the following: let

D={4m if m =2 or 3 mod4,
m ifm=1mod4.

Then Q(v/m) = Q(vV/D) and D is the discriminant of K. We have:
(2) ramifies in K iff D is even i.e. m =2, 3 (4);

(2) splits in K iff (2)=1,i.e. D=1 (8),or m =1 (8);

(2) remains prime in K iff (2) = -1,i.e. D=5 (8), or m =5 (8).

The above corollary gives us a highbrow proof of Theorem 3.2.
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In the case of cyclotomic fields K = Q(¢), { = e?>™*/? for p prime, the
result of Theorem 18.4 is especially expedient in calculating the Stufe, since
here any even p is unramified; i.e. e, = 1; whereas f, is precisely the order
of 2 (mod p) for each p. Hence the following.

Corollary 2. Let K = Q(e2™/?) (p odd prime). Then s(K) = 2 iff order
of 2 modulo p is even.

Remark. The beauty of the statements of Corollaries 1 and 2 is that
they are fully in global terms. The statement of Theorem 18.4 includes
local terms.

We now want to give a purely elementary proof of (18.1) for the case of
cyclotomic fields. The Stufe of the general cyclotomic field Q(e*™/™) can
then be determined as above. Indeed we have the following.

Theorem 18.5. Let K(™ = Q(e?™/™) = Q(¢), where m > 3 and odd,
and let f be the mulliplicative order of 2 modm. Then

(m)y _ J 2 if fis even,
(KT = {4 if f is odd.

Furthermore if 2 | |m, then K(™ = K(™/?) (and m/2 is odd) and if 4|m
then v/—1 € K™ and so s(K(™) = 1.

We first prove (18.1) in the form of the following two lemmas:

Lemmal. Let K be any field and let L/ K be ¢ normal separable extension
of odd degree. Suppose s(K) = 4; then s(L) = 4.

Lemma 2. Let K‘(,m)/Qg be an eztension of even degree, where p|2. Then
s(Kgm)) <2.

Remarks.

1. Lemma 1 is Theorem 3.7 (Springer). We shall give a different proof
for the special case.

2. See Lemma 17.6 witha =56 = 1.

Proof of Lemma 1. Let G = Gal(L/K') so that o(G) is odd. Suppose, to
the contrary that s(L) < 2, say

-1=X+Y? (X,Yel).
Then [, c6(~1)? = [[,ec(X2+Y?)7 ie
1= [[(X7 +V-TY"}X° - v=1r") (18.2)

e€G
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Now let [I,eq(X +V-1Y7) = U + /-1V(U,V € L(v-1)). Then for

T € G, we have

(U +V=1V) =7 [J(X° +V=1v7) = [[ (X" + V=1Y™)

e€G o0€G
=U ++V/-1V,

since as o runs through G, so does ro. It follows that U ++v/—1V € K(v/-1),
i.e. that U, V € K. Hence

[H&x-v=1y")=v - v=1V.

o€G
(11.2) now gives
1= (U + VIV - VEIY)
=U?+V? (U,V € K)
i.e. s(K) <2 - a contradiction. g

Proof of Lemma 2. Let G = Gal(K'(,m)/Qg). If we can find some inter-
mediate field L between Q; and K '(,m), then we can complete the proof by
induction as follows: since the degree [K},m) : Q,] is even, either the degree
[K;m) : L] is even or the degree [L : Q] is even, or both.

(m)
Ky

Q2
If [L : Q2] is even, then by induction hypothesis, s(L) < 2, so a fortiori
s(Kém)) <2 If [K‘(,m) : L] is even but [L : Q,] is odd, then by Lemma 1,
s(L) = 4 and so again by the induction hypothesis, s(K'(,m)) < 2. To find
L, we proceed as follows: 2|o(G) so by Cauchy’s theorem there exists an
element of order 2 in Gj; call it a. Let H = {e,a} and let L be the fixed
field of H. Then L is an intermediate field as required, unless H = G, i.e.

L = Q,. But then K ,(,m) is a quadratic extension of Q; and the possibilities
for K '(,m) are the following: the coset representatives of Q;z inQ} area =1,
-1, -3, -5, =2, —6, —10, —14. The seven proper quadratic extensions of

Q: are Qz(v/a), a # 1. We have s(Q2(v/—1)) = 1, while the Stufe of any
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other quadratic extension is at most 2, e.g. in Q2(v/—3) we have
0=(v=-3)2+12+12 +12,
hence s(Q2(v/—3)) < 3 so <2 and so on. O

Theorem 18.5 now follows exactly like Theorem 18.4.
Corollary 1. Let p =7 (8) be a prime, then s(K®) = 4.

Proof. We have (2/p) = (=1)@*~1/8 = 1; hence 2 € G;z. But o(G;z) =
(p —1)/2. Thus the order of 2 (mod p) divides (p — 1)/2 which is odd since
p =7 (8). Thus the order of 2 mod p is odd so s(K®) = 4. O

We thus arrive at the result of P. and S. Chawla (and of Shapiro and
Leep) proved earlier by elementary methods.

Corollary 2. Let p = 3 or 5 (8) be a prime which divides m. Then
s(K(m™) = 2.

Proof. 1t is enough to show that f, the order of 2 mod m, is even and
for this it is enough to show that the order of 2 mod p is even. We have
2/p) = (1)@ D/8 = _1 je 207D/2 = _1(p)so f f(p—1)/2 i.e
2f Y(p—1); but 277! = 1(p)ie. f](p—1)and 2|(p—1). It follows that
21f. a

We thus arrive at the result of S. Chawla proved earlier in an elementary
way.

If m =1 (8), one can have both the possibilities: s(K(’“)) = 2 or 4, for
example:

(1) m=17 f=8,s(K™)=2.
(2) m=173, f=9,s(KM)=4

For alternative proofs of these results, including Theorem 18.4, see [B1],
[C17], [F1], [M1].

Let us now go back to the pythagoras number of fields. We shall use
Pourchet’s theorem for algebraic number fields K; although in Chapter 17
we only covered the case K = Q, all the proofs go through just as easily for
a general K. We have the following [H5].

Theorem 18.6 (Hsia-Johnson-Pourchet). Let K be a formally real
algebraic number field. Then P(K) = 3 or 4; it is 4 iff there exists a dyadic
prime p of K (i.e. p|2) such that [K} : Q2] is odd.
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Proof. First let p bea dyadic prime of K at which the local degree (K}, : Q2]
is odd. Since s(Qz) = 4 it follows, by Springer’s theorem, that s(K,) = 4:
-1=al+... 42 (aj € Kp; 4 least).

By the weak approximation theorem, there exists an element a € K which
is positive at all the real primes of K and as near as we like to —1 at p. It
follows that a needs precisely four squares for its representation as a sum

of squares in K; so P(K) > 4. By Theorem 18.2, therefore, P(K) = 4.

Conversely suppose [K, : Q2] is even for all p|2. Since s(Q2) = 4, we see
by (18.1) that s(Kp) = 2 for all p|2. For p J2, if p is finite, again s(K,) < 2,
while if p is infinite complex, K, = C so s(K,) =1 < 2. So any sum of
squares in such a Ky is a sum of at most three squares (in K)).

Let now a € K be a sum of squares in K, so a is a sum of squares in
K, for all p and so a sum of at most three squares in K, for p finite and
infinite complex (as proved above); but if p is infinite real, since a is a sum
of squares in such a K, = R, we have a > 0 and thus in fact a is a single
square in R. Thus a is a sum of at most three squares in all K, (without
exception), so by the Hasse-Minkowski theorem, it is a sum of at most three
squares in K, hence P(K) < 3. Now it is easy to show that P(K) # 1 or
2; see Exercise 5.6 and Exercise 2 of this chapter and don’t forget K is
formally real. Hence P(K) = 3. (|

As a corollary to Theorem 18.6, we calculate the pythagorean number of
a real quadratic field.

Let K = Q(\/&), d > 0, a square-free integer. If d = 1 (8), then 2 = pp’
splits, so the local degrees at p and p’ are each equal to 1: [K, : Q] =
[Kpr : Q2] = 1. Hence P(K) = 4 by Theorem 18.6.

If d £ 1 (8), then either 2 remains prime in K or ramifies, so the local
degree at the (unique) dyadic prime of K (2 or p) is 2. It follows that
P(K) = 3. We have proved the

Corollary. Letd > 0 be square-free. Then

P(Q(VA)) = {4ifd5 1(8),

3 otherwise.

We now go over to the function fields K(X), where K is a formally real
algebraic number field (remember Chapter 17 was entirely Q(X)).

Theorem 18.7 (Hsia-Johnson-Pourchet). Let K be a formally real
algebraic number field. Then

P(K(X)) = P(K) + 1.
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Proof. We know that P(K) =3 or 4. First let P(K)=4 and let a >> 0
be a totally positive element of K requiring P(K) to be the sum of four
squares for its representation as a sum of squares in K:
a=a% +a§+a§ +ai.

The polynomial X% +a € K(X) is a sum of five squares in K(X), and so is
positive definite. We claim that it cannot be a sum of four squares in K(X);
for suppose X2+a = f}(X)+...+ fZ(X) where, by Cassels’ lemma, we may
suppose f;j(X) € K[X]. Then by Corollary 3 of Chapter 2, a is a sum of
three squares in K, contradicting the choice of a. Hence X2 + a requires its
full quota of five squares for its representation as a sum of squares in K(X).
It follows that P(K (X)) > 5. But by Pourchet’s theorem P(K(X)) < 5.
So P(K(X))=5.

Next let P(K) =3 and let f(X) be a positive definite function in K(X).
We wish to show that f(X) is a sum of four squares in K(X). As usual, we
may suppose without loss of generality that f(X) € K[X]. We make use
of the following result (cf. Lemma 17.4 ) proved in exactly the same way
Lemma 17.4 was proved for Q:

Lemma 3. Let f(X) € K[X], K an algebraic number field, be a non-zero
polynomial. Then [a,b] represents f(X) in K[X] iff [a,b] represents f(X)
in each Ky[X] (p finite or infinite).

Taking @ = b = 1, it is enough to prove that f(X) is a sum of four squares
in K,[X] for all p. Now if p is infinite real or complex, so that K, = R
or C, then f(X) is a sum of at most two squares in K,[X] (see Theorem
4.1). Furthermore if p is non-dyadic, s(K,) = 2, so any element of K,(X),
in particular f(X) is a sum of three squares in K (X).

Finally let p be a dyadic prime. Since P(K) = 3, by Theorem 18.6,
[Kp : Qq] is even for all p|2. Thus for all p|2, s(K,) = 2 (see (18.1)) so
again for such p, f(X) is a sum of three squares in K,(X).

Thus f(X) is locally a sum of at most three squares and so a sum of four
squares. Hence f(X) is a sum of four squares in K(X). It follows that
P(K(X)) = 4 as required. a

As easy corollaries we prove the following.

Theorem 18.8.

(i) Let K be a formally real algebraic number field with [K : Q] odd. Then
P(K(X))=5.

(ii) Let K = Q(\/a), where d is square-free and positive, be a formally
real quadratic extension of Q. Then

P(A’(X))z {5 idel(8)

4 otherwise.
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Proof. (i) The local degree formula gives
[K:Q]=) [K,: Q]
pi2
Since the left side is odd, at least one term on the right is odd. It follows
from Theorem 18.6 that P(K) = 4. Hence by Theorem 18.7, P(K(X)) = 5.
(ii) Is immediate from Theorem 18.7 and the Corollary to Theorem 18.6.
O

If K is a non-formally real algebraic number field (not containing \/—_1),
so that s(K) = 2 or 4, then
P(K)=3(K)+1 (Theorem 16.3).
_ {3ifs(K)=2,
T 5if s(K) =4,
- { 3 if the local degree [K : Q2] at all dyadic p is even,

5 otherwise.
The pythagoras number of the p-adic fields can also be worked out using

our results so far:

First let p be non-dyadic. Now K, is never formally real (—1 is always a
sum of squares in K}). Let s(Kp) be the Stufe of K. Then by Theorem
16.3,

P(Ky(X)) = s(Kp) + 1
s(Kp(X))+1 (Theorem 11.8(i))
_J2if s(Kp) =1,
T 3if s(Kp)=2.
Next if p is a dyadic prime then we have the following table:

s(Kp) =;(K,,(X)) P(Kp) | P(Kp)(X)

2 2
2 3 3
4 4 5

Finally, it is possible to extend the complete discussion about sums of four
squares in Q(X) to sums of four squares in K(X), where K is a formally
real algebraic number field. For details see [H5]. For details regarding sums
of two squares in K(X), see [H5]; in Chapter 17, we only covered the case
K=Q.

There are many interesting fields whose Stufe, pythagoras number, num-
ber of square classes (i.e. order of K*/K *2) etc. need to be determined and
a variety of fields and examples are available. The most common fields are
the following:
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1. Global fields. These are:

(a) Algebraic number fields, i.e. finite extensions of Q,
(b) Function fields in one variable over F, (finite field) i.e. finite extensions
of F(X).

2. Local fields. These are fields F with a discrete non-archimedean
valuation v such that F' is complete with respect to v; discrete means v :
F — 7, rather than F — R.

Of special interest among local fields F are the p-adic fields, i.e. com-
pletions of global fields at non-archimedean primes (finite primes). Their
residue class fields F are finite. These turn out to be finite extensions of Q,
and the fields F,(()).

3. Real closed fields R. Most results proved for

(1) algebraic number fields,

(2) KP)

(3) the real numbers R and the fields R(X'), R(X,Y") etc.

are valid for

(1) global fields,

(2) local fields,

(3) the fields R, R(X), R(X,Y) etc. where R is any real closed field,
respectively.

We shall end this chapter with an interesting example provided by the
field

L=K((t))={amt™ + amp1t™™ +...+...]la; € K,m € Z},
the set of all formal Laurent series, m < 0 allowed, under the usual series
addition and multiplication. We have already made use of this field in

Chapter 4 (Dubois’ counterexample). We now give a more detailed account
of some of its properties. Our aim is the following;:

Theorem 18.9.

(i) Given an ordering > on K, there ezist precisely two orderings on
L = K((t)) eztending >, one making t positive, the other making ¢
negative.

In particular L is formally real if K is.

(1) If K is formally real and pythagorean, so is L.

(iii) If K is real closed, then the field K((t,))...((tn)) i3 pythagorean and
has 2"+! square classes (and 2" orderings, by induction.)
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Before giving the proof we verify that L is a local field. Indeed the

valuation v is given by
v(z) =v(amt™ +...)=m €L

The three properties
1) v(z)=ocoiff z=0
(i) v(zy) =v(z)+v(y)
(i) v(z +y) = min(v(z), v(y))
are all easily checked, giving a non-archimedean discrete valuation. The
valuation ring A of L is clearly K[[t]], the ring of all power series in ¢:

A=K[t]]={z€ L | v(z) > 0}.
The unique mazimal ideal p = {z € L | v(z) > 1}. This is a principal ideal
generated by any element m with v(n) = 1 eg. # = ¢. 7 is determined
up to a unit in A and is called a local uniformizer of A (or of L). The
field A/p = L is the residue class field of L (relative to v). The mapping
a—sa=a+pof AL is called the projection of A onto L. The group of
units U of A is given by
U={z€A | z¢p}
={z€L" | v(z)=0}

Each y € L* uniquely equals un®® (u € U).

Now let £ = amt™ + ..., am #0. Sayz >0iff a,, > 0in K. It is
easy to see that all the axioms of an ordering in L are satisfied. This order
is unique in L (extending > of A’) in which ¢t > 0 since the power series
1+ at+ayt? +... isasquarein L:

L is a local field and

ag + art + ... 1s a square in L iff qq is a square in A/p. (183)
Now t and —t play the same role in K; indeed { — —t induces a K-
antomorphism of L, so L also has a unique order extending > of K in which
t < 0. In this ordering
z=apt™+...>0iff (-1)"a, > 0.
This proves (i).
To prove (ii), we proceed as follows: let
z=amt™+..., am #0
y=bt"+..., b £ 0.
Without loss of generality assume m < n. First let m < n; then by (18.3)
2?2 +y? = (amt™)*(1 +...) is a square in L as required. Next let m = n
and write a2, + 2, = 0 which implies I has Stufe 1, whereas K is formally
real.
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Then z? + y? = (emt™)?(1 +...), which is a square in L as above. This
proves (ii).

Finally we prove (iii). Note that amongst other things, (iii) shows the
existence of fields with arbitrarily large number of square classes (2" for
any n).

Since K is real closed, it is pythagorean, so by induction, using (ii), we see
that K((¢1))...((ts)) is pythagorean. That it has 2" orderings follows by
induction and (1), noting that K, being real and closed has a unique order.
Finally it remains to show that K((¢1))---((ts)) has 2**! square classes.
We use induction on n. Suppose a field F has N square classes. Then any
non-zero element of F((t)) can be written as

ata(l + byt + I)2t2 + )
with a € F*, by, b2, ..., € F.

The power series is a square in F((t)), soif a,,..., an are representatives
of the square classes for F, then ay,...,an, ta,...,tay are representatives
of the square classes of F((t)).

That completes the proof. O

Exercises

1. Let L = K((t)) and suppose K is formally real. Show that P(L) = P(K).
Hint: if f # 0 is a sum of squares in L, then show first that f = a (modulo
L**), where a € Goo(K).

If K is not formally real and the Stufe of K is s, deduce P(L) = s+ 1.

2. Show that if K is a formally real algebraic number field then P(K) # 2.

Hint: Find a non-dyadic prime p such that —1 ¢ K;’. Show that if = is
a uniformizer, then the quadratic form X? 4+ Y? 4+ 722 is anisotropic over
Kp. So m, which is a SOS in K, is not a SOS of two squares (nor 1),
so P(K,) > 2. Now by the approximation theorem and the local square
theorem, produce an a € K* which is totally positive (i.e. is a SOS) but
not a sum of two squares in K, so P(K) > 2.



Appendix 1 (for Chapter 10)
Reduction of matrices to canonical forms

We have here six propositions and their corollaries, three for symmetric,
and three for skew-symmetric, matrices over the reals, the complexes and
the quaternions. The results over the reals and the complexes are standard
material and we shall only state the propositions and their corollaries here.
Propositions 5 and 6, are over the quaternions, and we give proofs on lines
similar to those over the reals and the complexes.

Proposition 1. Let S be a real symmetric n xn matriz; then there ezists a
real orthogonal matriz O, such that S = OAO', where A = diag(X1,..., ).

Corollary. If in addition S? = I,,, then

I. 0
r=(5 )

Proposition 2. Let T be a real skew-symmetric n X n matriz and let n be
even; then there ezists a real orthogonal matriz O such that

0 A A 0
T=O( )O', where A=< )

-A 0
0 Ar|/2
A; 20 for all j.

Corollary. If in addition T? = —1I,,, then we can take A = I,,/5.
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Proposition 3. Let S be a complez symmetric n xn matriz; then there ez-
A1 0

ists a unitary matriz U such thaet S = UAU’, where A = s
0 An

A; 20 forallj.
Corollary. If in addition, SS =1, then we can take \; =1 for all j.

Proposition 4. Let T be a complez skew-symmetric n X n matriz, n even;

then there exists a unitary matriz U such that T =U (_OA 3) U', where
A 0
A= , A; 20 forall j
0 An/2

Corollary. If in addition TT = —1,, then A =1,,.

Proposition 5. Let S be a quaternion matriz with S’ = S (the bar indi-

cates the conjugate quaternion). Then there ezists an O such that 00' =
A1 0

I., and S = OAOQ', where A = .
0 An
Proof. Write S = Sy + €,S; + €S2 + €3S3. Then S’ = S implies
So — 18] — €S, — €3S = So + €,S; + €252 + €S53,
i.e. Sg is symmetric while S, S3, S; are skew-symmetric real matrices.
Now try to solve the equation
Sx = Ax (A real).
Writing X = ug + €3u; + €2up + €3u3, this gives
(So + €181 + €282 + €3S3)(ug + €1u; + €2u2 + €3u3)
= Aug + €uy + eaup + €3u3).

Equating components, we get four equations, which we write in matrix form:

So . —Sl —Sg —Sg Uy
Sl So e | —-53 Sg u -0
Sg Sg So — Al —S] L1 5] -
S3 —Sg Sl So - Al ug

i.e. say (T — AI)u = 0. Here T is symmetric since S, Sz, S3 are skew-
symmetric and Sp is symmetric. Thus all the characteristic roots of
T are real. Select one, call it A. Now normalize the vector x =
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ug + & u; + €ug + €313, i.e. make X'x =1, in other words

! —
(uf — eru] — u) — esuy)(g + €Uy + €2uz + €3u3z) =1

or
ujug + uju; +ujuy + ujuz =1 (i)
ugu; — ujug + ujuy —upuz =0 (ii)
uguz — uyug + ujuz — uzu; =0 (ii)
ugus — uzug + ujuz — upuy =0 (iv)

Here (ii), (iii), (iv) turn out to be trivially true since ugu; = ujug etc., being
scalar, and so all terms just cancel out. However (i) is the normalization
condition.

Now complete the (orthonormal) basis x = x x®@ . x(® of C*/C
and let

X = (x®x®, ... x™).

Then
A0 O
X'sx=1{o0
0 S*

where §* = S* for X'SX = (x()'Sx());; and for i = j = 1, this is

equal to XV'Sx(M = AxM'xM = X\, When i = 1, (xV)'S) = s'zV) =

Sx™M = 8%V = A%V (since §' = §). So (V'S = AxD', so xV'sx() =

A7 X6 = ¢ if § > 1. Thus the top row equals (},0,...,0) as required.
A

_— - 0
But (X'SX)' = X'SX so the first column is | . |, and this same relation

shows that S* satisfies $*' = S*.
Now complete the proof by induction. O

Corollary. If in addition S =1, then A = (I" 0 )
0 -I._,
Proof. S? =1=>A2=1I= ’\_2'1,‘ = 1for all 5. Now let A; = ag + €101 +€2a0 +
eaas (even supposing it is a quaternion). Then
1= /\? = (ag ~ af ~ a2 - ag) + €12.apa; + €32apa, + €3.2a¢a3
implies a2 = a?+a%+a2+1s0ag # 0, since a, ay, as are real, and aga;, = 0,
agay = 0, agaz = 0. Since ag # 0 so a,, a,, az are all 0 so ag = +1. Now

shuffle up rows and A = (]3' I ) as required. O
n—p
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Proposition 6. Let T be a quaternion matriz sati:sfying T+ T = 0.
Then there ezists a quaternion matriz O such that 00' =1, T = OAO/,
A 0
Ag .
where A = . and the \; are quaternions of the form
0 An
Aj = pje (u; €R).
Proof. Consider the equation Tx = Axe; and try to solve it for A real. Write
T = Sg+¢,S; + €282 +¢€3S3 so that T+T' = 0 implies S, is skew-symmetric
and S,, 83, S; are all (real) symmetric. Let x = up + €;u; + €2u; + €e3u;.
Then Tx = Axe; becomes

Soug — S;u; + Au; — Syuy — Szu; =0 (i1)
Siug — Aug + Sou; — Szuz +Souz =0 (1)
Soup + Szu; + Sguz — Sjuz —Auz =0 (iv)
Ssug — Sou; + Sjug + duy +Spuz =0 (1ii)

Number them as shown, then write them as numbered with signs of (ii),
(iii) changed throughout. Then we get the equivalent matrix equation

So —S; + 21 -S89 -S; Ug

Sl — Al So —S3 Sg m -0
S2 S3 So _Sl . | u -
S3 —82 Sl -+ Al So uj3

ie.

S] - Al So —Sg 52 Up
'—So Sl - Al Sg S3 m =0
—-Sa Sg —Sl - Al —So (15 -
82 Sa So _Sl - I us

or say (A — AI)u = 0. Here A is symmetric, so all its characteristic roots
are real; let A be one. Then for

X =ug + €U + €2U2 + €3U3

we have Tx = JMxe;. Now normalize this x and write it as x(!) so that

Tx() = AxMe¢, and complete to an orthonormal basis x(¥,..., x(™ of
H"/R.

Let X = (x(V,...,x(™) so that X'X = I,. Then X'TX = (Agl £)
where again T"* + T* = 0. Now proceed by induction as usual. a

Corollary. If in addition, T* = —1,, then A = ¢ 1.

Proof. T? = -1, = OAO'OND' =1, = A2 = -1, = Aj = 1 (for
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me 0
. N2€1
all j). So A = . where n; = +1. But the —1’s
0 Nn€1
can all be made 41 by pre- and post- multiplication by ( -0 ) and
0o .

-1

( - 0 ) where the diagonal entries are ¢, if the corresponding sign is
0o .

+1 and € if —1.



Appendix 2 (for Chapter 7):
The Krein-Milman Theorem
for convex cones

We assume the reader is familiar with convex subsets of R™ and their ex-
treme points.
The set S C R" is called a cone if for each u € S, du € S for all A > 0.
The result we require is the analogue of the Krein-Milman theorem for
convex cones. We first state and prove this theorem for compact convex
subsets of R™.

Theorem (Krein-Milman Theorem). A compact convez subset k of
R™ is the closed convez hull of its ezireme points.

Proof. Let p denote the collection of all subsets X of ¥ which are compact
and which are such that

ty+(1-t)ze X, t>0, ,y,z€k=>y,z€X (%)

It is easy to check that if X € p and A : R* — R is any linear map with
maximum value A on X, then
Xa={z€eX|A(z)= ]}

is also in p; X, is a hyperplane section of X. We now assert that each
X € p contains an extreme point z. For consider px, the family of all sets
in p that are subsets of X. This family of closed subsets of the space X has
the finite intersection property. Using the compactness of X it follows that
p x must contain a minimal nonempty member Y. Such a ¥ must have only
one element z, otherwise an appropriate Y5 would be still smaller. This z
is clearly an extreme point by (*).
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Having proved, in particular, the existence of extreme points of k (note
that £ € p) we now consider their closed convex hull H. We have shown
in fact that H has a non-empty intersection with every member of p. This
stronger fact implies H = k for otherwise some A : R® — R, having max-
imum value A on k, would have lesser values on all of H, and so H would
not intersect kj. O

Note. This proof can be found in W. Rudin’s Functional Analysis, 1973,
pages 70-71.

Now let C be a cone in R™. For each point u € C, we define the ray
[u] € C as the set of all Au (A > 0). Alternatively define an equivalence
relation on points of C by saying u ~ v if and only if 0, u, v are collinear.
Let C be the quotient space (under this equivalence) and say C' is compact
if C' is compact. Further call the ray [u] extreme if [u] can not be written in
the form ¢[v] + (1 —t)[w], t > 0 and [v], [w] distinct rays of C, both different
from [u].

Then we have

Theorem 1'. A “compact” convez cone is the closed conver hull of its
extreme rays.
The proof is exactly like that of Theorem 1. O

Finally we know that the set P, ,, of all positive semi-definite forms of
degree m in n variables form a closed cone in R* where k = ('"i':'l_ 1). It

follows that P, m is the closed hull of its extreme rays as required.

Remarks. The case R" considered above is older than Krein-Milman; in-
deed for R™ the theorem is already in H. Minkowski, Gesammelte Abhand-
lungen 1911 part II, page 160, lines 11-14.

The Krein-Milman paper is “On the extreme points of regularly convex
sets”, Studia Math, 9 (1940), 133-138.

A version that holds for k", k not complete, is in V.L. Klee, “Extreme
points of convex sets without completeness of the scalar field”, Mathematika,
11 (1964), 59-63.
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